Record Details

On fiber cones of m-primary ideals

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title On fiber cones of m-primary ideals
 
Creator JAYANTHAN, AV
PUTHENPURAKAL, TJ
VERMA, JK
 
Subject macaulay local-rings
rees-algebras
minimal multiplicity
mixed multiplicities
cohen-macaulayness
property
depth
fiber cones
mixed multiplicities
joint reductions
cohen-macaulay fiber cones
gorenstein fiber cones
ideals having minimal and almost minimal mixed multiplicities
 
Description Two formulas for the multiplicity of the fiber cone F(I) = circle plus(infinity)(n=0) I-n/mI(n) of an in-primary ideal of a d-dimensional Cohen-Macaulay local ring (R, in) are derived in terms of the mixed multiplicity e(d-1) (m vertical bar I), the multiplicity e(I), and superficial elements. As a consequence, the Cohen-Macaulay property of F(I) when I has minimal mixed multiplicity or almost minimal mixed multiplicity is characterized in terms of the reduction number of I and lengths of certain ideals. We also characterize the Cohen-Macaulay and Gorenstein properties of fiber cones of in-primary ideals with a d-generated minimal reduction J satisfying l(I-2/Ji) = I or l(Im/Jm) = 1.
 
Publisher CANADIAN MATHEMATICAL SOC
 
Date 2011-07-19T11:41:08Z
2011-12-26T12:51:11Z
2011-12-27T05:37:39Z
2011-07-19T11:41:08Z
2011-12-26T12:51:11Z
2011-12-27T05:37:39Z
2007
 
Type Article
 
Identifier CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 59(1), 109-126
0008-414X
http://dx.doi.org/10.4153/CJM-2007-005-8
http://dspace.library.iitb.ac.in/xmlui/handle/10054/5286
http://hdl.handle.net/10054/5286
 
Language en