Modeling of Reactions between Gas Bubble and Molten Metal Bath-Experimental Validation in the Case of Decarburization of Fe-Cr-C melts
DSpace at IIT Bombay
View Archive InfoField | Value | |
Title |
Modeling of Reactions between Gas Bubble and Molten Metal Bath-Experimental Validation in the Case of Decarburization of Fe-Cr-C melts
|
|
Creator |
WANG, HJ
VISWANATHAN, NN BALLAL, NB SEETHARAMAN, S |
|
Subject |
kinetics
gas-liquid reactions bubbles simulation mass transfer decarburization partial pressure of oxygen fe-cr-c melt |
|
Description |
A theoretical generic model describing the mass transfer phenomena between rising gas bubbles and a metal bath has earlier been developed by the present authors, to predict the composition change in the melt as consequence of blowing different oxidant gases. In order to verify the model predictions, a series of experiments involving reactions between Fe-Cr-C melts and different O(2)-CO(2) gas mixtures were carried out. The results showed that the decarburization deviates significantly from thermodynamic paths predicted on the basis of bulk compositions and that the model was able to make reasonably reliable predictions of the changes of chromium and carbon contents in the melt as a function of time. According to the model, the compositions at the vicinity of injection point as well as at the gas-melt interface in the bubble are likely to be far from that in the bulk. The results of the present set of experiments showed, with CO(2) injection, the utilization of the available oxygen for decarburization was higher as compared to O(2) injection in the case of melts containing higher carbon levels (>1mass%). Reverse is the case in low carbon melts. The results also indicate relatively less Cr-losses from the metal bath when CO(2) is used as the oxidant. As the model predictions are found to be reasonably reliable, the model predictions are extended to predict the impact of the variation of different process parameters.
|
|
Publisher |
FREUND PUBLISHING HOUSE LTD
|
|
Date |
2011-07-29T20:38:14Z
2011-12-26T12:52:37Z 2011-12-27T05:39:07Z 2011-07-29T20:38:14Z 2011-12-26T12:52:37Z 2011-12-27T05:39:07Z 2009 |
|
Type |
Article
|
|
Identifier |
HIGH TEMPERATURE MATERIALS AND PROCESSES, 28(6), 407-419
0334-6455 http://dx.doi.org/10.1515/HTMP.2009.28.6.407 http://dspace.library.iitb.ac.in/xmlui/handle/10054/7824 http://hdl.handle.net/10054/7824 |
|
Language |
en
|
|