Record Details

Second-order splitting combined with orthogonal cubic spline collocation method for the Kuramoto-Sivashinsky equation

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Second-order splitting combined with orthogonal cubic spline collocation method for the Kuramoto-Sivashinsky equation
 
Creator MANICKAM, AV
MOUDGALYA, KM
PANI, AK
 
Subject monomial basis functions
diagonal linear-systems
gaussian points
kuramoto-sivashinsky equation
orthogonal spline collocation method
semidiscrete schemes
error estimates
differential algebraic equations
implicit runge-kutta methods
 
Description In this paper, a second-order splitting method is applied to the Kuramoto-Sivashinsky equation and then an orthogonal cubic spline collocation procedure is employed to the approximate resulting system. This semidiscrete method yields a system of differential algebraic equations (DAEs) of index 1. Error estimates in L-2 and L-infinity norms are obtained for the semidiscrete approximation. For the time discretization, the time integrator RADAU5 is used. The results of numerical experiments are presented to validate the theoretical findings.
 
Publisher PERGAMON-ELSEVIER SCIENCE LTD
 
Date 2011-08-26T10:29:00Z
2011-12-26T12:57:24Z
2011-12-27T05:39:51Z
2011-08-26T10:29:00Z
2011-12-26T12:57:24Z
2011-12-27T05:39:51Z
1998
 
Type Article
 
Identifier COMPUTERS & MATHEMATICS WITH APPLICATIONS, 35(6), 5-25
0898-1221
http://dx.doi.org/10.1016/S0898-1221(98)00013-3
http://dspace.library.iitb.ac.in/xmlui/handle/10054/11276
http://hdl.handle.net/10054/11276
 
Language en