Solution of constrained optimization problems by multi-objective genetic algorithm
DSpace at IIT Bombay
View Archive InfoField | Value | |
Title |
Solution of constrained optimization problems by multi-objective genetic algorithm
|
|
Creator |
SUMMANWAR, VS
JAYARAMAN, VK KULKARNI, BD KUSUMAKAR, HS GUPTA, K RAJESH, J |
|
Subject |
disjunctive programming-models
algebraic process systems dynamic optimization distillation-columns minlp problems optimal-design batch search bioprocesses framework constrained optimization problems multi-objective genetic algorithm |
|
Description |
This paper introduces a method for constrained optimization using a modified multi-objective algorithm. The algorithm treats the constraints as objective functions and handles them using the concept of Pareto dominance. The population members are ranked by two different ways: first ranking is based on objective function. value and the second ranking is based on Pareto dominance of the population members. The maintenance of elite lists for both rankings facilitates preservation of potentially superior solutions. A range of problems including non-linear programming and mixed integer non-linear programming has been solved to test the efficacy of the proposed algorithm. The algorithm effectively handles constraints encountered in both small-scale and large-scale optimization problems. The performance of the algorithm compares favourably with existing evolutionary and heuristic approaches. (C) 2002 . .
|
|
Publisher |
PERGAMON-ELSEVIER SCIENCE LTD
|
|
Date |
2011-08-26T13:34:27Z
2011-12-26T12:57:28Z 2011-12-27T05:41:35Z 2011-08-26T13:34:27Z 2011-12-26T12:57:28Z 2011-12-27T05:41:35Z 2002 |
|
Type |
Article
|
|
Identifier |
COMPUTERS & CHEMICAL ENGINEERING, 26(10), 1481-1492
0098-1354 http://dx.doi.org/10.1016/S0098-1354(02)00125-4 http://dspace.library.iitb.ac.in/xmlui/handle/10054/11325 http://hdl.handle.net/10054/11325 |
|
Language |
en
|
|