Record Details

On the SL(2) period integral

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title On the SL(2) period integral
 
Creator ANANDAVARDHANAN, UK
PRASAD, D
 
Subject distinguished representations
l-indistinguishability
multiplicities
sl(n)
 
Description Let E/F be a quadratic extension of number fields. For a cuspidal representation pi of SL2(A(E)), we study in this paper the integral of functions in pi on SL2(F)\SL2(A(F)). We characterize the nonvanishing of these integrals, called period integrals, in terms of pi having a Whittaker model with respect to characters of E\A(E) which are trivial on A(F). We show that the period integral in general is not a product of local invariant functionals, and find a necessary and sufficient condition when it is. We exhibit cuspidal representations of SL2 (AE) whose period integral vanishes identically while each local constituent admits an SL2-invariant linear functional. Finally, we construct an automorphic representation pi on SL2(A(E)) which is abstractly SL2(A(F)) distinguished but for which none of the elements in the global L-packet determined by it is distinguished by SL2(A(F)).
 
Publisher JOHNS HOPKINS UNIV PRESS
 
Date 2011-08-17T02:43:07Z
2011-12-26T12:55:17Z
2011-12-27T05:44:03Z
2011-08-17T02:43:07Z
2011-12-26T12:55:17Z
2011-12-27T05:44:03Z
2006
 
Type Article
 
Identifier AMERICAN JOURNAL OF MATHEMATICS, 128(6), 1429-1453
0002-9327
http://dx.doi.org/10.1353/ajm.2006.0000
http://dspace.library.iitb.ac.in/xmlui/handle/10054/9712
http://hdl.handle.net/10054/9712
 
Language en