A simple model to determine in situ mixing height growth from surface measurements
DSpace at IIT Bombay
View Archive InfoField | Value | |
Title |
A simple model to determine in situ mixing height growth from surface measurements
|
|
Creator |
NATH, S
PATIL, RS |
|
Subject |
daytime mixed-layer
internal boundary-layer onshore flow inversion dispersion mixing height radiosonde solar model turbulence |
|
Description |
A generic In Situ Mixing Height Growth (IMG) model, capable of predicting the real-time growth of the mixed layer and its diurnal evolution from routinely observed simple surface meteorological is developed. The algorithm for the determination of temporally growing daytime mixing height includes both convective and mechanical turbulence contributions. It accounts for neutral as well as height varying potential temperature gradients above the mixed layer. For thermally stable and mechanically dominated unstable night time Atmospheric Boundary Layer (ABL) the module uses similarity formulae based on the wind velocity [1]), the Monin-Obukhov length [2], and the Coriolis parameter. In the convective case simple slab model is integrated, based on initial lapse rate and the surface heat flux. The lapse rate is evaluated on the basis of vertical atmospheric stability, surface type and surface temperature, This differentiates the IMG model from other existing mixing height models that need initial measured lapse rate for calculation. IMG model is site specific as it calculates the radiative incoming heat flux depending on the solar declination estimates based on-site latitude and longitude. The IMG model is applied to calculate mixing height for India by using surface data (viz. wind speed, surface temperature, surface type) from 152 surface meteorological stations. Results have been evaluated with radiosonde mixing height data procured from 18 upper air stations. Sensitivity analysis of the model with respect to various parameters is performed. The model is formulated after reviewing presently available radiosonde mixing height data in India and can satisfactorily provide an alternative means of estimating mixing height for air pollution dispersion models.
|
|
Publisher |
KLUWER ACADEMIC PUBL
|
|
Date |
2011-08-17T03:04:12Z
2011-12-26T12:55:18Z 2011-12-27T05:44:04Z 2011-08-17T03:04:12Z 2011-12-26T12:55:18Z 2011-12-27T05:44:04Z 2003 |
|
Type |
Article
|
|
Identifier |
ENVIRONMENTAL FLUID MECHANICS, 3(3), 195-219
1567-7419 http://dx.doi.org/10.1023/A:1022841802519 http://dspace.library.iitb.ac.in/xmlui/handle/10054/9718 http://hdl.handle.net/10054/9718 |
|
Language |
en
|
|