Reactive oxygen species induced by shear stress mediate cell death in Bacillus subtilis
DSpace at IIT Bombay
View Archive InfoField | Value | |
Title |
Reactive oxygen species induced by shear stress mediate cell death in Bacillus subtilis
|
|
Creator |
SAHOO, SUSMITA
RAO, KRISHNAMURTHY K SURAISHKUMAR, GK |
|
Subject |
bacteria
cell culture cytology fragrances shear stress proteins |
|
Description |
Exposure of Bacillus subtilis to a shear rate of 1,482/s leads to a rapid loss of cell viability after 10 h of growth. Biochemical and molecular evidences provided below strongly suggest that cell death under high shear results from an apoptosis-like process similar to that described in eukaryotes, with activation of a caspase-3-like protease (C3LP) followed by DNA fragmentation. Shear stress leads to an increase in specific intracellular reactive oxygen species (siROS), possibly through activation of NADH oxidase (NOX). The formation of siROS precedes the activation of C3LP and DNA fragmentation, thus establishing siROS as the molecular link between shear stress and apoptosis-like cell death. A model is proposed in which NOX is viewed as being strategically placed on the plasma membrane of B. subtilis that senses and converts a mechanical force arising from shear stress into a chemical signal leading to activation of C3LP, DNA fragmentation, and thus, apoptosis-like cell death.
|
|
Publisher |
Wiley
|
|
Date |
2009-11-26T11:23:15Z
2011-11-25T15:56:44Z 2011-12-26T13:01:29Z 2011-12-27T05:44:59Z 2009-11-26T11:23:15Z 2011-11-25T15:56:44Z 2011-12-26T13:01:29Z 2011-12-27T05:44:59Z 2006 |
|
Type |
Article
|
|
Identifier |
Biotechnology and Bioengineering 94(1), 118-127
1097-0290 10.1002/bit.20835 http://hdl.handle.net/10054/1727 http://dspace.library.iitb.ac.in/xmlui/handle/10054/1727 |
|
Language |
en
|
|