Record Details

Quantification of the effect of amino acids on an integrated mTOR and insulin signaling pathway

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Quantification of the effect of amino acids on an integrated mTOR and insulin signaling pathway
 
Creator VINOD, PKU
VENKATESH, KV
 
Subject p70 s6 kinase
tuberous sclerosis complex-1
tumor-suppressor proteins
small gtpase-rheb
mammalian target
cell-growth
receptor substrate-1
skeletal-muscle
gene-products
rapamycin complex-1
 
Description Integration of nutrient and growth factor signaling pathways through mammalian TOR (mTOR) plays a central role in the regulation of cell growth. However, the mechanism of integration of these two signals in mTOR activation is largely unknown. Moreover, the nutritional input involving amino acids is yet to be characterized. Excess amino acid conditions, such as in obesity and protein-rich diets, are known to regulate insulin signaling through mTOR activation resulting in insulin resistance. Here, we develop a dynamic model to identify the regulatory role of amino acids in mTOR activation and to study its effect on insulin signaling in relation to multiple feedback loops present in the insulin signaling pathway. The analysis revealed that amino acids bring about multiple effects in the regulation of mTOR that might be represented by a single mechanism. Insulin signaling was demonstrated to operate between two extreme conditions involving tumor growth and insulin resistance, with multiple feedback loops tightly controlling and maintaining a robust insulin response. The state of insulin resistance was characterized by a decrease in the time lag or an increase in the magnitude of the negative feedback loop facilitated through perturbations such as excess input of amino acids. Such a condition disturbs the delicate balance between positive and negative feedback loops to yield an insulin-resistant state.
 
Publisher ROYAL SOC CHEMISTRY
 
Date 2011-08-28T15:54:13Z
2011-12-26T12:58:06Z
2011-12-27T05:47:25Z
2011-08-28T15:54:13Z
2011-12-26T12:58:06Z
2011-12-27T05:47:25Z
2009
 
Type Article
 
Identifier MOLECULAR BIOSYSTEMS, 5(10), 1163-1173
1742-206X
http://dx.doi.org/10.1039/b816965a
http://dspace.library.iitb.ac.in/xmlui/handle/10054/11780
http://hdl.handle.net/10054/11780
 
Language en