A fast method for discovering critical edge sequences in e-commerce catalogs
DSpace at IIT Bombay
View Archive InfoField | Value | |
Title |
A fast method for discovering critical edge sequences in e-commerce catalogs
|
|
Creator |
DUTTA, KAUSHIK
VANDERMEER, DEBRA DATTA, ANINDYA KESKINOCAK, PINAR RAMAMRITHAM, KRITHI |
|
Subject |
data mining
electronic commerce customer satisfaction data storage equipment graph theory |
|
Description |
Web sites allow the collection of vast amounts of navigational data – clickstreams of user traversals through the site. These massive data stores offer the tantalizing possibility of uncovering interesting patterns within the dataset. For e-businesses, always looking for an edge in the hyper-competitive online marketplace, the discovery of critical edge sequences (CESs), which denote frequently traversed sequences in the catalog, is of significant interest. CESs can be used to improve site performance and site management, increase the effectiveness of advertising on the site, and gather additional knowledge of customer behavior patterns on the site. Using web mining strategies to find CESs turns out to be expensive in both space and time. In this paper, we propose an approximate algorithm to compute the most popular traversal sequences between node pairs in a catalog, which are then used to discover CESs. Our method is both fast and space efficient, providing a vast reduction in both the run time and storage requirements, with minimum impact on accuracy. |
|
Publisher |
Elsevier
|
|
Date |
2009-05-08T02:35:08Z
2011-12-08T06:55:32Z 2011-12-26T13:01:52Z 2011-12-27T05:47:27Z 2009-05-08T02:35:08Z 2011-12-08T06:55:32Z 2011-12-26T13:01:52Z 2011-12-27T05:47:27Z 2007 |
|
Type |
Article
|
|
Identifier |
European Journal of Operational Research 181(2), 855-871
0377-2217 10.1016/j.ejor.2006.06.055 http://hdl.handle.net/10054/1299 http://dspace.library.iitb.ac.in/xmlui/handle/10054/1299 |
|
Language |
en
|
|