Record Details

Prediction of the performance of an ion chamber amplifier under gamma radiation

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Prediction of the performance of an ion chamber amplifier under gamma radiation
 
Creator AGARWAL, V
SUNDARSINGH, VP
RAMACHANDRAN, V
 
Subject low-dose-rate
linear bipolar ics
integrated-circuits
instrumentation
dependence
 
Description The ion chamber amplifier (ICA) plays a major role in the proper functioning of a nuclear reactor as it monitors the radiations from the nuclear reactor by measuring the ionic activity inside the ion chamber. The signal conditioning circuitry of the ICA detects and conditions the weak ionic currents coming from the ion chamber dome. Degradation in the performance of the semiconductor devices used in this part of the ICA, can lead to inaccurate monitoring of the reactor operation, resulting in a possible catastrophe due to malfunction. Further, the response of the ICA under irradiation also depends upon the strength of the input signal (ionic) current it is required to handle. The active devices used in the ICA under study are operational amplifiers (Op-Amps) such as DN8500A and OPA111, instrumentation amplifier INA101, transistor 2N2920A and a voltage reference device, AD584. Since these devices may be sensitive to radiation, one must know their radiation behaviour so that the performance of the ICA can be predicted. This paper examines the performance of the ICA by characterising the radiation profiles of its vital components, viz. the Op-Amps, instrumentation amplifiers, transistors, etc. by monitoring their parametric changes on-line, i.e. when the source is on, and the devices are biased. The simulation runs involve the simulation of the entire ICA circuitry using the changed values of the vital parameters such as input bias current and input offset voltage. The main advantage of this method is that it obviates irradiating the whole ICA circuit to study its irradiation performance, and simulates an environment of radiation leakage around the ICA. Based on this study, results are presented to predict the performance of the ICA. (c) 2005
 
Publisher ELSEVIER SCIENCE SA
 
Date 2011-07-28T17:00:16Z
2011-12-26T13:02:53Z
2011-12-27T05:50:10Z
2011-07-28T17:00:16Z
2011-12-26T13:02:53Z
2011-12-27T05:50:10Z
2005
 
Type Article
 
Identifier NUCLEAR ENGINEERING AND DESIGN, 235(13), 1373-1387
0029-5493
http://dx.doi.org/10.1016/j.nucengdes.2004.12.007
http://dspace.library.iitb.ac.in/xmlui/handle/10054/7452
http://hdl.handle.net/10054/7452
 
Language en