Record Details

Affine invariant extended cyclic codes over galois rings

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Affine invariant extended cyclic codes over galois rings
 
Creator DEY, BK
RAJAN, BS
 
Subject encoding (symbols)
theorem proving
set theory
polynomials
 
Description Recently, Blackford and Ray-Chaudhuri used transform domain techniques to permutation groups of cyclic codes over Galois rings. They used the same technique to find a set of necessary and sufficient conditions for extended cyclic codes of length 2m over any subring of GR(4,m) to be affine invariant. Here, we use the same technique to find a set of necessary and sufficient conditions for extended cyclic codes of length pm over any subring of GR(pe,m) to be affine invariant, for e=2 with arbitrary p and for p=2 with arbitrary e. These are used to find two new classes of affine invariant Bose-Chaudhuri-Hocquenghem (BCH) and generalized Reed-Muller (GRM) codes over Z2e for arbitrary e and a class of affine invariant BCH codes over Zp2 for arbitrary prime p.
 
Publisher IEEE
 
Date 2009-01-03T06:53:29Z
2011-11-25T16:22:49Z
2011-12-26T13:05:17Z
2011-12-27T05:51:40Z
2009-01-03T06:53:29Z
2011-11-25T16:22:49Z
2011-12-26T13:05:17Z
2011-12-27T05:51:40Z
2004
 
Type Article
 
Identifier IEEE Transactions on Information Theory 50(4), 691-698
0018-9448
http://hdl.handle.net/10054/527
10.1109/TIT.2004.825044
http://dspace.library.iitb.ac.in/xmlui/handle/10054/527
 
Language en