Record Details

Analysis of synaptic quantal depolarizations in smooth muscle using the wavelet transform

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Analysis of synaptic quantal depolarizations in smooth muscle using the wavelet transform
 
Creator DESAI, UB
VAIDYA, PP
VENKATESWARLU, K
MANCHANDA, R
 
Subject bioelectric potentials
wavelet transforms
neurophysiology
alcohols
 
Description The time-frequency characteristics of synaptic potentials contain valuable information about the process of neurotransmission between nerves and their target organs. For example, at the synapse between autonomic nerves and smooth muscle, two central issues of neurophysiology, i.e., (1) the probability of neurotransmitter release and (2) the quantal behavior of transmission can be deduced from analysis of the rising phases of evoked excitatory junction potentials (eEJP's) recorded from smooth muscle. eEJP rising phases are marked by prominent inflexions, which reflect these features of neuronal activity, Since these inflexions contain time-varying frequency information, the authors have applied recent techniques of time-frequency analysis based upon wavelet transforms to eEJP's recorded from the guinea-pig vas deferens in vitro. They find that these techniques allow accurate and convenient characterization of neuronal release sites, and that their probability of release falls between 0.001-0.004. They have also analyzed eEJP's recorded in the presence of the chemical 1-heptanol, which reveals quantal depolarizations. These results have helped clarify the nature of the quantal depolarizations that underly eEJP's. The present method offers significant advantages over those previously employed for these tasks, and holds promise as a novel approach to the analysis of synaptic potentials.
 
Publisher IEEE
 
Date 2008-11-21T06:42:07Z
2011-11-25T12:24:44Z
2011-12-26T13:06:37Z
2011-12-27T05:54:37Z
2008-11-21T06:42:07Z
2011-11-25T12:24:44Z
2011-12-26T13:06:37Z
2011-12-27T05:54:37Z
2000
 
Type Article
 
Identifier IEEE Transactions on Biomedical Engineering 47(6), 701-08
0018-9294
http://dx.doi.org/10.1109/10.844215
http://hdl.handle.net/10054/70
http://dspace.library.iitb.ac.in/xmlui/handle/10054/70
 
Language en_US