Record Details

Surface Radiative Transfer in Gas-to-Gas Cocurrent Microheat Exchanger

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Surface Radiative Transfer in Gas-to-Gas Cocurrent Microheat Exchanger
 
Creator MAHULIKAR, SP
HERWIG, H
ZHOU, JW
SODHANI, YM
 
Subject MULTISCALE DESIGN OPTIMIZATION
MICROCHANNEL HEAT-EXCHANGERS
AXIAL CONDUCTION
PERFORMANCE
CHANNEL
microheat exchanger
radiative transfer
volumetric heat transfer coefficient
 
Description The influence of surface radiative transfer in parallel flow microheat exchanger is numerically studied for its importance at high temperatures and for small flow dimensions. For these heat exchangers, the role of radiation is beneficial when the convective heat transfer to the annulus flow exceeds the convective heat transfer from the core flow. For this case, radiation improves the heat exchanger performance by decreasing the logarithmic mean temperature difference and by increasing the capacity, effectiveness, and volumetric heat transfer coefficient. Additional surface area is made available for convection to the annulus flow, thereby increasing the specific heat transfer surface for fixed geometry. Therefore, a high emissivity layer over the surfaces of microheat exchanger can improve the heat exchange performance. The active heat transfer area weighted by the convective heat flow rates is introduced as the true measure of heat exchanger compactness. (C) 2010 American Institute of Chemical Engineers AIChE J, 57: 40-50, 2011
 
Publisher JOHN WILEY & SONS INC
 
Date 2012-06-26T03:37:27Z
2012-06-26T03:37:27Z
2011
 
Type Article
 
Identifier AICHE JOURNAL,57(1)40-50
0001-1541
http://dx.doi.org/10.1002/aic.12250
http://dspace.library.iitb.ac.in/jspui/handle/100/13880
 
Language English