Graphene oxide for electrochemical sensing applications
DSpace at IIT Bombay
View Archive InfoField | Value | |
Title |
Graphene oxide for electrochemical sensing applications
|
|
Creator |
ROY, S
SOIN, N BAJPAI, R MISRA, DS MCLAUGHLIN, JA ROY, SS |
|
Subject |
GRAPHITE OXIDE
FUNCTIONALIZED GRAPHENE IMPEDANCE SPECTROSCOPY IMMUNOSENSOR BIOSENSORS SENSORS SHEETS AMPLIFICATION PARTICLES |
|
Description |
By exploiting the presence of abundant carboxylic groups (-COOH) on graphene oxide (GO) and using EDC-NHS (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride-N-hydroxysuccinimide) chemistry to covalently conjugate protein molecules, we demonstrate a novel electrochemical immunosensor for detection of antibody-antigen (Rabbit IgG-AntiRabbit IgG) interactions. The interactions were verified using Electrochemical Impedance Spectroscopy (EIS). Although GO is known to be a poor conductor, the charge transfer resistance (R(P)) of a GO modified glassy carbon electrode (GCE) was found to be as low as 1.26 Omega cm(2). This value is similar to that obtained for reduced graphene oxide (RGO) or graphene and an order of magnitude less than bare GCE. The EIS monitored antibody-antigen interactions showed a linear increase in R(P) and the overall impedance of the system with increase of antibody concentration. Rabbit IgG antibodies were detected over a wide range of concentrations from 3.3 nM to 683 nM with the limit of detection (LOD) estimated to be 0.67 nM. The sensor showed high selectivity towards Rabbit IgG antibody as compared to non-complementary myoglobin. RGO modified GCE showed no sensing properties due to the removal of carboxylic groups which prevented subsequent chemical functionalization and immobilization of antigen molecules. The sensitivity and selectivity achievable by this simple label free technique hint at the possibility of GO becoming the electrode material of choice for future electrochemical sensing protocols.
|
|
Publisher |
ROYAL SOC CHEMISTRY
|
|
Date |
2012-06-26T09:31:50Z
2012-06-26T09:31:50Z 2011 |
|
Type |
Article
|
|
Identifier |
JOURNAL OF MATERIALS CHEMISTRY,21(38)14725-14731
0959-9428 http://dx.doi.org/10.1039/c1jm12028j http://dspace.library.iitb.ac.in/jspui/handle/100/14294 |
|
Language |
English
|
|