Record Details

Aerosol Transport and Source Attribution Using Sunphotometers, Models and In-Situ Chemical Composition Measurements

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Aerosol Transport and Source Attribution Using Sunphotometers, Models and In-Situ Chemical Composition Measurements
 
Creator VLADUTESCU, DV
MADHAVAN, BL
GROSS, BM
ZHANG, Q
ZHOU, S
 
Subject Aerosol mass spectrometry
aerosol optical depth
aerosol size modes
Cimel
Multifilter Rotating Shadowband Radiometer (MFRSR)
sunphotometer
transport
HIGH-RESOLUTION
OPTICAL DEPTH
MASS-SPECTROMETRY
ATMOSPHERIC AEROSOLS
RETRIEVAL ALGORITHM
ORGANIC AEROSOL
AMBIENT
MFRSR
FINE
INSTRUMENT
 
Description Understanding of chemical, physical, and radiative processes-emissions, transport, deposition, and modification of aerosol optical properties due to ageing-is of major importance to global and regional climate simulations and projections as well as health impairment. This paper presents aerosol optical properties retrieved with the Multifilter Rotating Shadowband Radiometers (MFRSRs) and the source attribution based on back trajectories and in situ aerosol chemical composition analysis obtained during the Aerosol Life Cycle Intensive Observational Period at Brookhaven National Laboratory on Long Island, NY, during July and August 2011. The aerosol optical properties retrieved with the MFRSR exhibit excellent agreement with those obtained with a colocated Cimel sunphotometer. Apportioning aerosol optical depths by size modes reveals several episodes of high loading of fine aerosol (diameter less than 2.5 mu m). Analysis of optical and physical properties of aerosols as well as their chemical composition obtained by an in situ high-resolution time-of-flight aerosol mass spectrometer together with back trajectories indicates that the principal source of high concentrations of fine aerosols observed during July 18-24 was forest fires in western Canada, consistent with reports by the Canadian Forest Service and satellite observations by the Moderate Resolution Imaging Spectroradiometer (MODIS).
 
Publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
 
Date 2014-10-14T12:50:19Z
2014-10-14T12:50:19Z
2013
 
Type Article
 
Identifier IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 51(7)3803-3811
http://dx.doi.org/10.1109/TGRS.2012.2227489
http://dspace.library.iitb.ac.in/jspui/handle/100/14448
 
Language en