Record Details

A note on cancellation of projective modules

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title A note on cancellation of projective modules
 
Creator DHORAJIA, AM
KESHARI, MK
 
Subject ELEMENTARY ACTION
UNIMODULAR ROWS
MONOID RING
 
Description We prove the following results. (i) Let A be an affine algebra of dimension d >= 4 over (F) over bar (p) (with p >= d). Then all projective A-modules of rank d - 1 are cancellative. (ii) Let A be a ring of dimension d such that Ed+1(R) acts transitively on Um(d+1)(R) for every finite extension R of A. Then for any projective A-module P of rank d, E(A circle plus P) acts transitively on Um(A circle plus P). (C) 2011 Elsevier B.V. All rights reserved.
 
Publisher ELSEVIER SCIENCE BV
 
Date 2014-10-16T14:25:36Z
2014-10-16T14:25:36Z
2012
 
Type Article
 
Identifier JOURNAL OF PURE AND APPLIED ALGEBRA, 216(1)126-129
http://dx.doi.org/10.1016/j.jpaa.2011.05.010
http://dspace.library.iitb.ac.in/jspui/handle/100/15779
 
Language en