A note on cancellation of projective modules
DSpace at IIT Bombay
View Archive InfoField | Value | |
Title |
A note on cancellation of projective modules
|
|
Creator |
DHORAJIA, AM
KESHARI, MK |
|
Subject |
ELEMENTARY ACTION
UNIMODULAR ROWS MONOID RING |
|
Description |
We prove the following results. (i) Let A be an affine algebra of dimension d >= 4 over (F) over bar (p) (with p >= d). Then all projective A-modules of rank d - 1 are cancellative. (ii) Let A be a ring of dimension d such that Ed+1(R) acts transitively on Um(d+1)(R) for every finite extension R of A. Then for any projective A-module P of rank d, E(A circle plus P) acts transitively on Um(A circle plus P). (C) 2011 Elsevier B.V. All rights reserved.
|
|
Publisher |
ELSEVIER SCIENCE BV
|
|
Date |
2014-10-16T14:25:36Z
2014-10-16T14:25:36Z 2012 |
|
Type |
Article
|
|
Identifier |
JOURNAL OF PURE AND APPLIED ALGEBRA, 216(1)126-129
http://dx.doi.org/10.1016/j.jpaa.2011.05.010 http://dspace.library.iitb.ac.in/jspui/handle/100/15779 |
|
Language |
en
|
|