Mixed finite element methods for a fourth order reaction diffusion equation
DSpace at IIT Bombay
View Archive InfoField | Value | |
Title |
Mixed finite element methods for a fourth order reaction diffusion equation
|
|
Creator |
DANUMJAYA, P
PANI, AK |
|
Subject |
fourth order reaction diffusion equations
fisher Kolmogorov equation mixed fem a prior error estimates completely discrete scheme existence and uniqueness of the discrete problem Lyapunov functional Gronwall's Lemma numerical experiment SPLINE COLLOCATION METHODS VELOCITY SELECTION MARGINAL STABILITY FRONT PROPAGATION |
|
Description |
Mixed finite element methods are applied to a fourth order reaction diffusion equation with different types of boundary conditions. Some a priori bounds are established with the help of Lyapunov functional. The semidiscrete schemes are derived using C0-piecewise linear finite elements in spatial direction and error estimates are obtained. The semidiscrete problem is then discretized in the temporal direction using backward Euler method and the wellposedness of the completely discrete scheme is discussed. Finally, a priori error estimates are established. While deriving a priori error estimates, Gronwall's lemma is applied and the constants involved in the error bounds do not depend exponentially on \documentclass{article} \usepackage{amsmath, amsthm, amssymb, amsfonts}\pagestyle{empty}\begin{document}$\frac{1}{\gamma}$ \end{document}, where ? is a parameter appeared in the fourth order derivative. (c) 2011Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012
|
|
Publisher |
WILEY-BLACKWELL
|
|
Date |
2014-10-16T15:10:01Z
2014-10-16T15:10:01Z 2012 |
|
Type |
Article
|
|
Identifier |
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 28(4)1227-1251
http://dx.doi.org/10.1002/num.20679 http://dspace.library.iitb.ac.in/jspui/handle/100/15867 |
|
Language |
en
|
|