Record Details

Drug-protein interactions in micellar media: Thermodynamic aspects

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Drug-protein interactions in micellar media: Thermodynamic aspects
 
Creator CHOUDHARY, S
KISHORE, N
 
Subject Naproxen
Diclofenac sodium
Hexadecyltrimethylammonium bromide
Micelles
Drug-protein interactions
Bovine serum albumin
Binding thermodynamics
BOVINE SERUM-ALBUMIN
TRITON X-100
BINDING
WATER
SPECTROSCOPY
SURFACTANTS
DICLOFENAC
DELIVERY
BROMIDE
AGGREGATION
 
Description Devising directions for surfactant assisted effective controlled release of drugs requires a quantitative and qualitative understanding of the drug-protein, drug-surfactant, and surfactant-protein interactions. In this work, the effect of micellar environment on the binding of naproxen and diclofenac sodium with bovine serum albumin has been studied. The isothermal titration calorimetric (ITC) results suggest that the binding of naproxen is reduced with the protein when it is delivered from micellar media. However, the binding is observed to be strengthened for diclofenac sodium. The differential scanning calorimetric results suggest that the integrity of the binding sites is not altered under the employed micellar conditions. The ITC results further suggest that the numbers of naproxen and diclofenac sodium molecules partitioning/binding per micelle of HTAB are 15 and 38, respectively. In the micelles, naproxen is restricted to the surface of the micelles whereas diclofenac sodium is able to partition in the palisade layers. A detailed understanding of the energetics of the drug-protein interactions under different conditions helps in devising directions for effective drug delivery. The ITC and DSC results have shown that the micelles assisted drug-protein interactions are modified depending on the hydrophobic content of the drug. (C) 2013 Elsevier Inc. All rights reserved.
 
Publisher ACADEMIC PRESS INC ELSEVIER SCIENCE
 
Date 2014-12-28T11:11:53Z
2014-12-28T11:11:53Z
2014
 
Type Article
 
Identifier JOURNAL OF COLLOID AND INTERFACE SCIENCE, 413118-126
0021-9797
1095-7103
http://dx.doi.org/10.1016/jjcis.2013.09.026
http://dspace.library.iitb.ac.in/jspui/handle/100/16326
 
Language English