Record Details

The Hilbert function of a maximal Cohen-Macaulay module. Part II

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title The Hilbert function of a maximal Cohen-Macaulay module. Part II
 
Creator PUTHENPURAKAL, TJ
 
Subject RING
SINGULARITIES
INTERSECTION
 
Description Let (A, m) be a strict complete intersection of positive dimension and let M be a maximal Cohen-Macaulay A-module with bounded Betti numbers. We prove that the Hilbert function of M is non-decreasing. We also prove an analogous statement for complete intersections of codimension two. (C) 2014 Elsevier B.V. All rights reserved.
 
Publisher ELSEVIER SCIENCE BV
 
Date 2014-12-28T16:25:11Z
2014-12-28T16:25:11Z
2014
 
Type Article
 
Identifier JOURNAL OF PURE AND APPLIED ALGEBRA, 218(12)2218-2225
0022-4049
1873-1376
http://dx.doi.org/10.1016/j.jpaa.2014.03.012
http://dspace.library.iitb.ac.in/jspui/handle/100/16878
 
Language English