The Hilbert function of a maximal Cohen-Macaulay module. Part II
DSpace at IIT Bombay
View Archive InfoField | Value | |
Title |
The Hilbert function of a maximal Cohen-Macaulay module. Part II
|
|
Creator |
PUTHENPURAKAL, TJ
|
|
Subject |
RING
SINGULARITIES INTERSECTION |
|
Description |
Let (A, m) be a strict complete intersection of positive dimension and let M be a maximal Cohen-Macaulay A-module with bounded Betti numbers. We prove that the Hilbert function of M is non-decreasing. We also prove an analogous statement for complete intersections of codimension two. (C) 2014 Elsevier B.V. All rights reserved.
|
|
Publisher |
ELSEVIER SCIENCE BV
|
|
Date |
2014-12-28T16:25:11Z
2014-12-28T16:25:11Z 2014 |
|
Type |
Article
|
|
Identifier |
JOURNAL OF PURE AND APPLIED ALGEBRA, 218(12)2218-2225
0022-4049 1873-1376 http://dx.doi.org/10.1016/j.jpaa.2014.03.012 http://dspace.library.iitb.ac.in/jspui/handle/100/16878 |
|
Language |
English
|
|