Record Details

Analysis of the accuracy of Shuttle Radar Topography Mission (SRTM) height models using International Global Navigation Satellite System Service (IGS) Network

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Analysis of the accuracy of Shuttle Radar Topography Mission (SRTM) height models using International Global Navigation Satellite System Service (IGS) Network
 
Creator MUKUL, M
SRIVASTAVA, V
MUKUL, M
 
Subject ELEVATION DATA
VALIDATION
Geodesy
error
accuracy
georeferencing
GPS/GNSS
radar
DEM/DTM
SRTM
 
Description The Shuttle Radar Topography Mission (SRTM) carried out in February 2000 has provided near global topographic data that has been widely used in many fields of earth sciences. The mission goal of an absolute vertical accuracy within 16 m (with 90% confidence)/RMSE similar to 10 m was achieved based on ground validation of SRTM data through various studies using global positioning system (GPS). We present a new and independent assessment of the vertical accuracy of both the X- and C-band SRTM datasets using data from the International GNSS Service (IGS) network of high-precision static GPS stations. These stations exist worldwide, have better spatial distribution than previous studies, have a vertical accuracy of 6 mm and constitute the most accurate ground control points (GCPs) possible on earth; these stations are used as fiducial stations to define the International Terrestrial Reference Frame (ITRF). Globally, for outlier-filtered data (135 X-band stations and 290 C-band stations), the error or difference between IGS and SRTM heights exhibits a non-normal distribution with a mean and standard error of 8.2 +/- 0.7 and 6.9 +/- 0.5 m for X- and C-band data, respectively. Continent-wise, Africa, Australia and North America comply with the SRTM mission absolute vertical accuracy of 16 m (with 90% confidence)/RMSE similar to 10 m. However, Asia, Europe and South America have vertical errors higher than the SRTM mission goal. At stations where both the X- and C-band SRTM data were present, the root mean square error (RMSE) of both the X- and C-bands was identical at 11.5 m, indicating similar quality of both the X- and C-band SRTM data.
 
Publisher INDIAN ACAD SCIENCES
 
Date 2016-01-14T12:34:20Z
2016-01-14T12:34:20Z
2015
 
Type Article
 
Identifier JOURNAL OF EARTH SYSTEM SCIENCE, 124(6)1343-1357
0253-4126
0973-774X
http://dx.doi.org/10.1007/s12040-015-0597-2
http://dspace.library.iitb.ac.in/jspui/handle/100/17509
 
Language en