Record Details

Subintegrality, invertible modules and Laurent polynomial extensions

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Subintegrality, invertible modules and Laurent polynomial extensions
 
Creator SADHU, V
 
Subject PICARD GROUP
RING
Subintegral extensions
seminormal rings
invertible modules
 
Description Let A subset of B be a commutative ring extension. Let be the multiplicative group of invertible A-submodules of B. In this article, we extend a result of Sadhu and Singh by finding a necessary and sufficient condition on an integral birational extension AaS dagger B of integral domains with dimAa parts per thousand currency sign1, so that the natural map is an isomorphism. In the same situation, we show that if dimAa parts per thousand yen2, then the condition is necessary but not sufficient. We also discuss some properties of the cokernel of the natural map in the general case.
 
Publisher INDIAN ACAD SCIENCES
 
Date 2016-01-14T12:35:21Z
2016-01-14T12:35:21Z
2015
 
Type Article
 
Identifier PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 125(2)149-160
0253-4142
0973-7685
http://dx.doi.org/10.1007/s12044-015-0225-8
http://dspace.library.iitb.ac.in/jspui/handle/100/17511
 
Language en