Record Details

Adjoint groups over Q(p)(X) and R-equivalence

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Adjoint groups over Q(p)(X) and R-equivalence
 
Creator PREETI, R
SOMAN, A
 
Subject P-ADIC CURVES
CLASSICAL-GROUPS
HASSE PRINCIPLE
FUNCTION-FIELDS
FORMS
INVARIANT
 
Description Let F be the function field of a smooth, geometrically integral curve over a p-adic field with p not equal 2. In this paper we show that if G is an absolutely simple adjoint algebraic group over F of type (2)A(n)*, C-n, or D-n, (D-4 non-trialitarian) such that the associated hermitian form has even rank, trivial discriminant (if G is of type (2)A(n)* or D-n) and trivial Clifford invariant (if G is of type D-n) then the group of rational equivalence classes, G(F)/R is trivial. (C) 2015 Elsevier B.V. All rights reserved.
 
Publisher ELSEVIER SCIENCE BV
 
Date 2016-01-15T04:22:26Z
2016-01-15T04:22:26Z
2015
 
Type Article
 
Identifier JOURNAL OF PURE AND APPLIED ALGEBRA, 219(9)4254-4264
0022-4049
1873-1376
http://dx.doi.org/10.1016/j.jpaa.2015.02.016
http://dspace.library.iitb.ac.in/jspui/handle/100/17746
 
Language en