A comprehensive proteomic analysis of totarol induced alterations in Bacillus subtilis by multipronged quantitative proteomics
DSpace at IIT Bombay
View Archive InfoField | Value | |
Title |
A comprehensive proteomic analysis of totarol induced alterations in Bacillus subtilis by multipronged quantitative proteomics
|
|
Creator |
REDDY, PJ
RAY, S SATHE, GJ GAJBHIYE, A PRASAD, TSK RAPOLE, S PANDA, D SRIVASTAVA, S |
|
Subject |
SALT STRESS-ADAPTATION
LARGE GENE LISTS ESCHERICHIA-COLI ANTIBACTERIAL ACTIVITY CELL-DIVISION PODOCARPUS-NAGI PROTEIN DERIVATIVES MEMBRANE GLUCOSE Totarol Filamentation Dehydrogenases iTRAQ B. subtilis Proteomics |
|
Description |
The rapid emergence of microbial drug resistance indicates the urgent need for development of new antimicrobial agents. Bacterial cell division machinery is considered as a promising antimicrobial target. Totarol is a naturally existing diterpenoid, which has the ability to restrain bacterial growth by perturbing the cell division. The present study was conducted to investigate the proteomic alterations in Bacillus subtilis as a consequence of totarol treatment to decipher its mechanism of action and possible molecular targets. Cellular proteome of the totarol treated B. subtilis AH75 strain was analyzed by using multiple complementary proteomic approaches. After the drug treatment, 12, 38 and 139 differentially expressed (1.5 fold change) proteins were identified using 2-DE, DIGE and iTRAQ analyses, respectively. In silico functional analysis of the identified differentially expressed proteins indicated a possible effect of totarol on the central metabolism for energy production, heme biosynthesis and chemotaxis. Interestingly, the primary dehydrogenases, which play a vital role in generating the reducing equivalent, were found to be repressed after totarol treatment indicating an apparent metabolic shutdown. Consequently, multiple cellular assays including resazurin assay and FAGS analysis of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) staining confirmed the effect of totarol on respiratory activity and cellular metabolism. Biological significance The exact mechanism of action of totarol is still unclear and further investigations are essential to identify the molecular/cellular targets of this potential antimicrobial agent. The present study demonstrates the application of differential proteome to decipher the mechanism of action and molecular targets of totarol in B. subtilis. Our quantitative proteome analysis revealed that totarol induced alterations in the expression levels of 139 proteins (1.5 fold change and 22 peptides) in B. subtilis. Findings obtained from this study indicate that totarol treatment leads to metabolic shutdown by repressing the major central metabolic dehydrogenases in B. subtilis. In addition, expression levels of universal chaperone proteins, heme biosynthesis, and ribosomal proteins were found to be altered, which caused the filamentation of the bacteria. To the best of our knowledge, this is the foremost inclusive investigation describing totarol induced alterations in B. subtilis proteome and diverse physiological processes. We anticipate that this in depth proteomic study may contribute to a better understanding of the mode of action of totarol and its primary molecular and cellular targets. (C) 2014 Published by Elsevier B.V.
|
|
Publisher |
ELSEVIER SCIENCE BV
|
|
Date |
2016-01-15T04:27:04Z
2016-01-15T04:27:04Z 2015 |
|
Type |
Article
|
|
Identifier |
JOURNAL OF PROTEOMICS, 114,247-262
1874-3919 1876-7737 http://dx.doi.org/10.1016/j.jprot.2014.10.025 http://dspace.library.iitb.ac.in/jspui/handle/100/17755 |
|
Language |
en
|
|