Record Details

Binding and Ratiometric Dual Ion Recognition of Zn2+ and Cu2+ by 1,3,5-Tris-amidoquinoline Conjugate of Calix[6]arene by Spectroscopy and Its Supramolecular Features by Microscopy

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title Binding and Ratiometric Dual Ion Recognition of Zn2+ and Cu2+ by 1,3,5-Tris-amidoquinoline Conjugate of Calix[6]arene by Spectroscopy and Its Supramolecular Features by Microscopy
 
Creator MUMMIDIVARAPU, VVS
BANDARU, S
YARRAMALA, DS
SAMANTA, K
MHATRE, DS
RAO, CP
 
Subject SELECTIVE FLUORESCENT SENSOR
ZINC IONS
LOWER RIM
DISTINGUISHING CADMIUM
QUINOLINE PLATFORM
AQUEOUS-MEDIA
RECEPTOR
WATER
HG2+
CHEMOSENSOR
 
Description Lower rim amide linked 8-amino quinoline and 8-amino naphthalene moiety 1,3,5-triderivatives of calix[6]arene L-1 and L-2 have been synthesized and characterized. While the L-1 acts as a receptor molecule, the L-2 acts as a control molecule. The complexation between L-1 and Cu2+ or Zn2+ was delineated by the absorption and electrospray ionization (ESI) MS spectra. The binding ability of these molecules toward biologically important metal ions was studied by fluorescence and absorption spectroscopy. The derivative L-1 detects Zn2+ by bringing ratiometric change in the fluorescence signals at 390 and 490 nm, but in the case of Cu2+, it is only the fluorescence quenching of 390 nm band that is observed, while no new band is observed at 390 nm. The stoichiometry of both the complexes is 1:1 and was confirmed in both the cases by measuring the ESI mass spectra. The isotopic peak pattern observed in the ESI MS confirmed the presence of Zn2+ or Cu2+ present in the corresponding complex formed with L-1. Among these two ions, the Cu2+ exhibits higher sensitivity. The density-functional theory (DFT) studies revealed the conformational changes in the arms and also revealed the coordination features in the case of the metal complexes. The arm conformational changes upon Zn2+ binding were supported by nuclear Overhauser effect spectrometry (NOESY) studies. The stronger binding of Cu2+ over that of Zn2+ observed from the absorption study was further supported by the complexational energies computed from the computational data. While the L-1 exhibited spherical particles, upon complexation with Cu2+, it exhibits chain like morphological features in scanning electron microscopy (SEM) but only small aggregates in the case of Zn2+. Thus, even the microscopy data can differentiate the complex formed between L-1 and Cu2+ from that formed with Zn2+.
 
Publisher AMER CHEMICAL SOC
 
Date 2016-01-15T06:01:11Z
2016-01-15T06:01:11Z
2015
 
Type Article
 
Identifier ANALYTICAL CHEMISTRY, 87(9)4988-4995
0003-2700
1520-6882
http://dx.doi.org/10.1021/acs.analchem.5b00905
http://dspace.library.iitb.ac.in/jspui/handle/100/17879
 
Language en