Versatile, Reversible, and Reusable Gel of a Monocholesteryl Conjugated Calix[4]arene as Functional Material to Store and Release Dyes and Drugs Including Doxorubicin, Curcumin, and Tocopherol
DSpace at IIT Bombay
View Archive InfoField | Value | |
Title |
Versatile, Reversible, and Reusable Gel of a Monocholesteryl Conjugated Calix[4]arene as Functional Material to Store and Release Dyes and Drugs Including Doxorubicin, Curcumin, and Tocopherol
|
|
Creator |
BANDELA, AK
HINGE, VK YARRAMALA, DS RAO, CP |
|
Subject |
SUPRAMOLECULAR GELS
ORGANIC LIQUIDS WATER GELATION ORGANOGELS GELATORS CALIXARENE ACID FLUORESCENCE DERIVATIVES ASSEMBLIES monocholesteryl derivatized calix[4]arene material storage and release drug encapsulation and release AFM and SEM molecular modeling |
|
Description |
Gels are interesting soft materials owing to their functional properties leading to potential applications. This paper deals with the synthesis of monocholesteryl derivatized calix[4]arene (G) and its instantaneous gelation at a minimum gelator concentration of 0.6% in 1:1 v/v THF/acetonitrile. The gel shows remarkable thermoreversibility by exhibiting T-gel -> sol at similar to 48 degrees C and is demonstrated for several cycles. The gel shows an organized network of nanobundles, while that of the sol shows spherical nanoaggregates in microscopy. A bundle with similar to 12 nm diameter possessing hydrophobic pockets in itself is obtained from computationally modeled gel, and hence the gel is suitable for storage and release applications. The guest-entrapped gels exhibit the same Microstructures as that observed with simple gels, while fluorescence spectra and molecular mechanics suggests that the drug molecules occupy the hydrophobic pockets. All the entrapped drug molecules are released into water, suggesting a complete recovery of the trapped species. The reusability of the gel for the storage and release of the drug into water is demonstrated for four consecutive cycles, and hence the gel formed from G acts as a functional material that finds application in drug delivery.
|
|
Publisher |
AMER CHEMICAL SOC
|
|
Date |
2016-01-15T06:17:28Z
2016-01-15T06:17:28Z 2015 |
|
Type |
Article
|
|
Identifier |
ACS APPLIED MATERIALS & INTERFACES, 7(21)11555-11566
1944-8244 http://dx.doi.org/10.1021/acsami.5b02506 http://dspace.library.iitb.ac.in/jspui/handle/100/17911 |
|
Language |
en
|
|