Record Details

THE DUAL HILBERT-SAMUEL FUNCTION OF A MAXIMAL COHEN-MACAULAY MODULE

DSpace at IIT Bombay

View Archive Info
 
 
Field Value
 
Title THE DUAL HILBERT-SAMUEL FUNCTION OF A MAXIMAL COHEN-MACAULAY MODULE
 
Creator PUTHENPURAKAL, TJ
ZULFEQARR, F
 
Subject Hilbert-Samuel polynomial
Multiplicity
Reduction
 
Description Let R be a Cohen-Macaulay local ring with a canonical module omega(R). Let I be an m-primary ideal of R and M, a maximal Cohen-Macaulay R-module. We call the function n -> l (Hom(R) (M, omega(R)/In+1 omega(R))) the dual Hilbert-Samuel function of M with respect to I. By a result of Theodorescu, this function is of polynomial type. We study its first two normalized coefficients. In particular, we analyze the case when R is Gorenstein.
 
Publisher TAYLOR & FRANCIS INC
 
Date 2016-01-15T07:56:01Z
2016-01-15T07:56:01Z
2015
 
Type Article
 
Identifier COMMUNICATIONS IN ALGEBRA, 43(7)2763-2784
0092-7872
1532-4125
http://dx.doi.org/10.1080/00927872.2014.904326
http://dspace.library.iitb.ac.in/jspui/handle/100/18104
 
Language en