THE DUAL HILBERT-SAMUEL FUNCTION OF A MAXIMAL COHEN-MACAULAY MODULE
DSpace at IIT Bombay
View Archive InfoField | Value | |
Title |
THE DUAL HILBERT-SAMUEL FUNCTION OF A MAXIMAL COHEN-MACAULAY MODULE
|
|
Creator |
PUTHENPURAKAL, TJ
ZULFEQARR, F |
|
Subject |
Hilbert-Samuel polynomial
Multiplicity Reduction |
|
Description |
Let R be a Cohen-Macaulay local ring with a canonical module omega(R). Let I be an m-primary ideal of R and M, a maximal Cohen-Macaulay R-module. We call the function n -> l (Hom(R) (M, omega(R)/In+1 omega(R))) the dual Hilbert-Samuel function of M with respect to I. By a result of Theodorescu, this function is of polynomial type. We study its first two normalized coefficients. In particular, we analyze the case when R is Gorenstein.
|
|
Publisher |
TAYLOR & FRANCIS INC
|
|
Date |
2016-01-15T07:56:01Z
2016-01-15T07:56:01Z 2015 |
|
Type |
Article
|
|
Identifier |
COMMUNICATIONS IN ALGEBRA, 43(7)2763-2784
0092-7872 1532-4125 http://dx.doi.org/10.1080/00927872.2014.904326 http://dspace.library.iitb.ac.in/jspui/handle/100/18104 |
|
Language |
en
|
|