Multichannel Compressive Sensing MRI Using Noiselet Encoding
DSpace at IIT Bombay
View Archive InfoField | Value | |
Title |
Multichannel Compressive Sensing MRI Using Noiselet Encoding
|
|
Creator |
PAWAR, K
EGAN, G ZHANG, JX |
|
Subject |
RANDOM PROJECTIONS
SIGNAL RECOVERY PULSE DESIGN RECONSTRUCTION EXCITATION CODES |
|
Description |
The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding.
|
|
Publisher |
PUBLIC LIBRARY SCIENCE
|
|
Date |
2016-01-15T10:14:15Z
2016-01-15T10:14:15Z 2015 |
|
Type |
Article
|
|
Identifier |
PLOS ONE, 10(5)
1932-6203 http://dx.doi.org/10.1371/journal.pone.0126386 http://dspace.library.iitb.ac.in/jspui/handle/100/18343 |
|
Language |
en
|
|