Record Details

Mapping The Reaction Coordinate For The Oxidative Addition Of Molecular Hydrogen To A Metal Center

Electronic Theses of Indian Institute of Science

View Archive Info
 
 
Field Value
 
Title Mapping The Reaction Coordinate For The Oxidative Addition Of Molecular Hydrogen To A Metal Center
 
Creator Dutta, Saikat
 
Subject Hydrolysis Reactions
Hydride Complexes
Chelating Phosphine Ligand
H-H Bond Elongation
Iridium Dihydrogen Complexes
Ruthenium Dihydrogen Complexes
Elongated Dihydrogen Complexes
Electron Dictationic Dihydrogen Complexes
Transition Metal Dihydrogen Complexes
Molecular Hydrogen - Binding
Metal Center
Elongated H2 Complexes
Iridium
Phosphine Coligands
Elongated Dihydrogen Ligands
Dihydrogen/Hydride Complex
Physical Chemistry
 
Description The binding of molecular hydrogen to a metal center leads to the elongation of the H−H bond and subsequently to its cleavage along the reaction coordinate for the oxidative addition of H2. There has been considerable interest in the study of the activation of dihydrogen and map out the reaction coordinate for the homolysis of H2 on a metal center. A large number of H2 complexes reported to date possess H−H distances ranging from 0.8 to 1.0 Å. A relatively fewer examples of elongated dihydrogen complexes wherein the H−H distances fall in the range of 1.0 to 1.5 Å, are known. Study of the elongated dihydrogen complexes is of great significance because of its relevance in important catalytic processes such as hydrogenation, hydrogenolysis, and hydroformylation. Objectives The objectives of this work are as follows:
(a) Synthesis and characterization of elongated dihydrogen complexes with chelating phosphine coligands by varying the electron donor ability.
(b) Trap the various intermediate states in the process of oxidative addition of H2 to a metal center.
(c) Map the reaction coordinate for the oxidative addition for the oxidative addition of H2 to a metal center.
Results
We have synthesized and characterized two new elongated dihydrogen complexes cis-[Ir(H)(η2-S2CH)(η2-H2)(PR3)2][BF4] (PR3 = PCy3, PPh3) wherein hydrogen atom undergoes site exchange between the H2 and the hydride sites. The dynamics of the exchange was studied using NMR spectroscopy. In addition, a series of ruthenium dihydrogen complexes of the type trans-[Ru(Cl)(η2-H2)(PP)][BF4] (PP = 1,2- Synopsis
bis(diarylphosphino)ethane) has been synthesized and characterized wherein the aryl group is a benzyl moiety with a substituent (p-fluoro, H, m-methyl, p-methyl, p-isopropyl); in this series of complexes, a small increment in the electron donor ability (decrease in Hammett substituent constants) of the chelating phosphine ligand resulted in an elongation of the H−H bond by a small, yet significant amount. We also synthesized a series of 16-electron dicationic dihydrogen complexes bearing elongated dihydrogen ligand. In addition, we prepared a series of dihydrogen complexes of the type [RuCp/Cp*(PP)(η2-H2)][OTf] (PP = 1,2-bis(diarylphosphino)ethane, 1,2-bis(diarylphosphino)methane, 1,2-bis(dialkylphosphino)methane) bearing elongated H2 ligand (dHH = 1.0 to 1.17 Å); in this series of complexes as well, we found that the H−H bond distances increased as the donor ability of the chelating phosphines increased in small increments, along the reaction coordinate for the oxidative addition of H2 to a metal center.
This investigation therefore, has established a very nice correlation between the H−H bond lengths and the Hammett substitutent constants (donor properties) resulting in the construction of dihydrogen complexes along the reaction coordinate for the oxidative addition of H2 to a metal center.
 
Contributor Jagirdar, Balaji R
 
Date 2010-07-15T05:03:35Z
2010-07-15T05:03:35Z
2010-07-15
2008-05-01
 
Type Thesis
 
Identifier http://hdl.handle.net/2005/754
 
Language en_US
 
Relation G22328