Investigation Of Electronic Structure Of Transition Metal Oxides Exhibiting Metal-insulator Transitions And Related Phenomena
Electronic Theses of Indian Institute of Science
View Archive InfoField | Value | |
Title |
Investigation Of Electronic Structure Of Transition Metal Oxides Exhibiting Metal-insulator Transitions And Related Phenomena
|
|
Creator |
Manju, U
|
|
Subject |
Metal-Insulator Transition (MIT)
Transition Metal Oxides Transition Metal Oxides - Electronic Structure Magnetic Superconductors Ruthernocuprates Transition Metal Oxides - X-ray Absorption Photoelectron Spectroscopy X-ray Absorption Fine Structure Doped Manganites La2−xSrxCuRuO6 Ca1−xSrxVO3 Ce1−xSrxTiO3 LaCoO3 LaFeO3 Inorgnic Chemistry |
|
Description |
Transition metal oxides have proven to be a fertile research area for condensed matter physicists due to the fascinating array of superconducting, magnetic and electronic properties they exhibit. A particular resurgence of intense activity in investigating the properties of these systems followed the discovery of high temperature superconductivity in the cuprates, colossal magnetoresistance in the manganites, ferroelectricity in the cobaltites and simultaneous ferroelectric and ferromagnetic ordering in the manganites. These diverse properties of transition metal compounds arise due to the presence of strong electron-electron interactions within the transition element 3d states. Indeed, it is the competition between the localizing effects of such interactions and the comparable hopping strengths driving the system towards delocalization, that is responsible for these wide spectrum of interesting properties. In terms of theoretical and fundamental issues, electronic structure of transition metal oxides play a most important role, providing a testing ground for new many-body theoretical approaches treating the correlation problem at various levels of approximations. In addition to this rich spectrum of properties, metal-insulator transitions often occur and can even be coincident with structural or magnetic changes due to the strong coupling between charge, magnetic and lattice degrees of freedom. However, in spite of the immense activities in this area, the underlying phenomena is not yet completely understood. A careful investigation of the electronic structure of these systems will help in the microscopic understanding of these and photoelectron spectroscopy has been established as the most powerful tool for investigating the electronic structures of these systems. In this thesis we investigate the electronic structures of some of these transition metal oxides and the metal-insulator transition as a function of electron correlation strength and doping of charge carriers by means of photoelectron spectroscopy; we analyze the experimental results using various theoretical approaches, in order to obtain detailed and quantitative understandings. This thesis is organized into seven chapters. Chapter 1 is a general introduction to the various concepts discussed in this thesis. Here we briefly describe the various mechanisms and theoretical formalisms used for understanding the metal-insulator transitions in strongly correlated systems and the evolution of the electronic structure across the transition. The experimental and the calculational techniques used in this thesis is described in Chapter 2. This includes different sample synthesis techniques and the characterization tools used in the present study. Photoelectron spectroscopic techniques used for probing the electronic structure of various systems are also discussed in this chapter. In Chapter 3, we discuss the coexistence of ferromagnetism and superconductivity in ruthenocuprates by looking at the electronic structures of RuSr2Eu1.5Ce0.5Cu2O10 which is a ferromagnetic superconductor having the ferromagnetic TC ~ 100 K and a superconducting transition of ~ 30 K compared with RuSr2EuCeCu2O10 which is a ferromagnetic (TC ~ 150 K) insulator in conjunction with two reference systems, RuSr2GdO6and Sr2RuO4. The coexistence of ferromagnetic order with superconductivity below the superconducting temperature is an interesting issue since the pair-breaking due to magnetic interactions is not significant in these cases. Extensive photoelectron spectroscopic measurements were performed on these systems and our results show that Eu and Ce in both the ruthenocuprates exists in 3+ and 4+ states, respectively. Also the analysis of the Ru 3d and 3p core levels suggests that Ru remains in the pentavalent state in both the cases. The constancy of Ru valency with doping of charge carriers that bring about an insulator to metal transition and the superconducting state suggests that the electronic structure and transport properties of these compounds are not governed by the Ru-O plane, but by the Cu-O plane, much as in the case of other high TC cuprates. Analysis of the Cu 2p core level spectra in terms of a cluster model, including configuration interaction and multiplet interactions between Cu 3d and 2p as well as that within the Cu 3d states, establish a close similarity of the basic electronic structure of these ruthenocuprates to those of other high TC cuprates. Here the charge transfer energy, Δ |
|
Contributor |
Sarma, D D
|
|
Date |
2010-07-26T05:26:08Z
2010-07-26T05:26:08Z 2010-07-26 2008-02 |
|
Type |
Thesis
|
|
Identifier |
http://hdl.handle.net/2005/789
|
|
Language |
en_US
|
|
Relation |
G22466
|
|