Record Details

Flow Acoustic Analysis Of Complex Muffler Configurations

Electronic Theses of Indian Institute of Science

View Archive Info
 
 
Field Value
 
Title Flow Acoustic Analysis Of Complex Muffler Configurations
 
Creator Vijaya Sree, N K
 
Subject Fluid Flow - Acoustics
Mufflers
Integrated Transfer Matrix Method
Mufflers - Pressure Drop
Mufflers - Flow Network Analysis
Mufflers - Flow Resistance
Integrated Transfer Matrix (ITM)
Flow Network Analysis
Acoustics
 
Description A theoretical study has been carried out on different methods available to analyze complex mufflers. Segmentation methods have been discussed in detail. The latest two port segmentation method has been discussed and employed for a few common muffler configurations, describing its implications and limitations.
A new transfer matrix based method has been developed in view of the lacunae of the available approaches. This Integrated Transfer Matrix (ITM) method has been developed particularly to analyze complex mufflers. An Integrated transfer matrix relates the state variables across the entire cross-section of the muffler shell, as one moves along the axis of the muffler, and can be partitioned appropriately in order to relate the state variables of different tubes constituting the cross-section. The method presents a 1-D approach, using transfer matrices of simple acoustic elements which are available in the literature. Results from the present approach have been validated through comparisons with the available experimental and three dimensional FEM based results.
The total pressure drop across perforated muffler elements has been measured experimentally and generalized expressions have been developed for the pressure loss across cross-flow expansion, cross-flow contraction elements, etc. These have then been used to derive empirical expressions for flow-acoustic resistance for use in the Integrated Transfer Matrix Method in order to predict the flow-acoustic performance of commercial mufflers.
A flow resistance model has been developed to analytically determine the flow distribution and thereby pressure drop of mufflers. Generalized expressions for resistance across the perforated elements have been derived by means of flow experiments as mentioned above. The derived expressions have been implemented in a flow resistance network that has been developed to determine the pressure drop across any given complex muffler. The results have been validated with experimental data.
 
Contributor Munjal, M L
 
Date 2013-06-21T07:08:30Z
2013-06-21T07:08:30Z
2013-06-21
2011-07
 
Type Thesis
 
Identifier http://hdl.handle.net/2005/2068
http://etd.ncsi.iisc.ernet.in/abstracts/2658/G24944-Abs.pdf
 
Language en_US
 
Relation G24944