Record Details

Growth of the Afanasy Nikitin seamount and its relationship with the 85 degree E Ridge, northeastern Indian Ocean.

DRS at CSIR-National Institute of Oceanography

View Archive Info
 
 
Field Value
 
Title Growth of the Afanasy Nikitin seamount and its relationship with the 85 degree E Ridge, northeastern Indian Ocean.
 
Creator Krishna, K.S.
Bull, J.M.
Ishizuka, O.
Scrutton, R.A.
Jaishankar, S.
Banakar, V.K.
 
Subject seamount
seismic reflection
ocean floor
 
Description The Afanasy Nikitin seamount (ANS) is a major structural feature (400 km-long and 150 km-wide) in the Central Indian Basin, situated at the southern end of the so-called 85 degree E Ridge. Combined analyses of new multibeam bathymetric, seismic reflection and geochronological data together with previously described magnetic data provide new insights into the growth of the ANS through time, and its relationship with the 85 degree E Ridge. The ANS comprises a main plateau, rising 1200 m above the surrounding ocean floor (4800m), and secondary elevated seamount highs, two of which (lie at 1600 and 2050 m water depths) have the morphology of a guyot, suggesting that they were formed above or close to sea-level. An unbroken sequence of spreading anomalies 34 through 32n.1 identified over the ANS reveal that the main plateau of the ANS was formed at 80–73 Ma, at around the same time as that of the underlying oceanic crust. The 40Ar/39Ar dates for two basalt samples dredged from the seamount highs are consistent, within error, at 67 Ma. These results, together with published results of late Cretaceous to early Cenozoic Indian Ocean plate reconstructions, indicate that the Conrad Rise hotspot emplaced both the main plateau of the ANS and Conrad Rise (including the Marion Dufresne, Ob and Lena seamounts) at 80–73 Ma, close to the India–Antarctica Ridge system. Subsequently, the seamount highs were formed by late-stage volcanism c. 6–13 Myr after the main constructional phase of the seamount plateau. Flexural analysis indicates that the main plateau and seamount highs of the ANS are consistent with Airy-type isostatic compensation, which suggest emplacement of the entire seamount in a near spreading-center setting. This is contrary to the flexural compensation of the 85 degree E Ridge further north, which is interpreted as being emplaced in an intraplate setting, i.e., 25–35 Myr later than the underlying oceanic crust. Therefore, we suggest that the ANS and the 85 degree E Ridge appear to be unrelated as they were formed by different mantle sources, and that the proximity of the southern end of the 85 degree E Ridge to the ANS is coincidental.
 
Date 2014-05-06T11:31:57Z
2014-05-06T11:31:57Z
2014
 
Type Journal Article
 
Identifier Journal of Earth System Science, vol.123(1); 2014; 33–47.
http://drs.nio.org/drs/handle/2264/4518
 
Language en
 
Rights Copyright [2014]. All efforts have been made to respect the copyright to the best of our knowledge. Inadvertent omissions, if brought to our notice, stand for correction and withdrawal of document from this repository.
 
Publisher Indian Academy of Sciences