<i style="mso-bidi-font-style:normal"><span style="font-size:11.0pt;mso-bidi-font-size:10.0pt;font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman";mso-bidi-font-family:"Times New Roman"; mso-ansi-language:EN-GB;mso-fareast-language:EN-US;mso-bidi-language:AR-SA" lang="EN-GB">In silico</span></i><span style="font-size:11.0pt;mso-bidi-font-size: 10.0pt;font-family:"Times New Roman";mso-fareast-font-family:"Times New Roman"; mso-bidi-font-family:"Times New Roman";mso-ansi-language:EN-GB;mso-fareast-language: EN-US;mso-bidi-language:AR-SA" lang="EN-GB"> structural and functional analysis of protein encoded by wheat early salt-stress response gene (WESR3)</span>
NOPR - NISCAIR Online Periodicals Repository
View Archive InfoField | Value | |
Title |
In silico structural and functional analysis of protein encoded by wheat early salt-stress response gene (WESR3)
|
|
Creator |
Mishra, A K
Tandon, Gitanjali Sharma, Rajendra Chandrasekharan, H Pandey, P S |
|
Subject |
WESR3
Triticum aestivum L. TaMlo Abiotic stress Wheat early salt-stress response gene |
|
Description |
95-100
Salt stress is one of the major abiotic stresses limiting grain yield in wheat (Triticum aestivum L.). Wheat early salt-stress response gene (WESR3) is one of the major salt stress genes, which is affected in the first phase of salt stress. In this study, sequence and structural analysis of protein coded by WESR3 gene was carried out using various bioinformatics tools. Sequence analysis of WESR3 protein revealed the presence of highly conserved regions of Mlo gene family. Three-dimensional modeling was carried out to elucidate its structure and its active site. The sequence analysis revealed that WESR3 protein might be involved in fungal pathogen attack pathway. Thus, in addition to its involvement in abiotic stresses, it also seemed to play an important part in biotic stress pathways. Out of the three modeled protein structures obtained from I-TASSER, HHPred and QUARK, the I-TASSER protein model was the best model based on high confidence score and lesser number of bad contacts. The Ramchandran plot analysis also showed that all amino acid residues of I-TASSER model lie in the allowed region and thus indicating towards the overall good quality of the predicted model. Seventeen active sites were predicted in the protein bearing resemblance to the Mlo family conserved regions. In conclusion, a detailed analysis of WESR3 protein suggested an important role of WESR3 in biotic and abiotic stress. These results aid to the experimental data and help to build up a complete view of WESR3 proteins and their role in plant stress response. |
|
Date |
2015-03-30T05:24:36Z
2015-03-30T05:24:36Z 2015-02 |
|
Type |
Article
|
|
Identifier |
0975-0959 (Online); 0301-1208 (Print)
http://hdl.handle.net/123456789/31267 |
|
Language |
en_US
|
|
Rights |
CC Attribution-Noncommercial-No Derivative Works 2.5 India
|
|
Publisher |
NISCAIR-CSIR, India
|
|
Source |
IJBB Vol.52(1) [February 2015]
|
|