Record Details

Discovery of molecular markers for Fusarium wilt via transcriptome sequencing of chickpea cultivars

NIPGR Digital Knowledge Repository (NDKR)

View Archive Info
 
 
Field Value
 
Title Discovery of molecular markers for Fusarium wilt via transcriptome sequencing of chickpea cultivars
 
Creator Jain, Mukesh
Pole, Anil K.
Singh, Vikash K.
Ravikumar, Ramapura L.
Garg, Rohini
 
Subject Fusarium
Chickpea
Single nucleotide polymorphisms
Microsatellites
Functional markers
 
Description Accepted date: 24 September 2015
The wilt caused by Fusarium oxysporum f.sp. Ciceris is a major problem for chickpea. The large-scale discovery of DNA polymorphisms in different cultivars can provide insights into the genetic basis of phenotypic differences. In the present study, we sequenced the transcriptomes of four chickpea cultivars with contrasting response to Fusarium infection, including susceptible JG62 and resistant/tolerant ICCV2, K850 and WR315. Based on the analysis of their transcriptome sequences, we identified at least 303 polymorphic microsatellites, of which 64 % could be physically mapped on the chickpea genome. Further, we identified a total of 14,462 single nucleotide polymorphisms (SNPs) and 1864 insertions/deletions (InDels) among the chickpea cultivars analysed. More than 50 % of the SNPs and 19 % of the InDels were detected in the predicted coding regions, and about 46 % of these SNPs resulted in nonsynonymous changes. In addition, we identified at least 60 large-effect SNPs and 248 InDels that affected the integrity of the encoded protein. Several defence-related genes involved in different cellular processes were found to harbour nonsynonymous and/or large-effect SNPs and/or InDels. These data will provide functional markers and promising target genes for wilt resistance and present a valuable resource for molecular breeding for this important trait in chickpea.
This work was supported financially by
the Department of Biotechnology, Government of India, New
Delhi, under the Challenge Programme on Chickpea Functional
Genomics and core grant from the National Institute of Plant
Genome Research.
 
Date 2016-01-05T10:18:00Z
2016-01-05T10:18:00Z
2015
 
Type Article
 
Identifier Mol. Breed., 35: 198
1572-9788
http://172.16.0.77:8080/jspui/handle/123456789/515
http://link.springer.com/article/10.1007%2Fs11032-015-0387-1
10.1007/s11032-015-0387-1
 
Language en_US
 
Publisher Springer