Record Details

Genome-wide identification and co-expression network analysis provide insights into the roles of auxin response factor gene family in chickpea

NIPGR Digital Knowledge Repository (NDKR)

View Archive Info
 
 
Field Value
 
Title Genome-wide identification and co-expression network analysis provide insights into the roles of auxin response factor gene family in chickpea
 
Creator Singh, Vikash K.
Rajkumar, Mohan Singh
Garg, Rohini
Jain, Mukesh
 
Subject Abiotic
Plant molecular biology
Auxin
chickpea
 
Description Accepted date: 22 August 2017
Auxin response factors (ARFs) are the transcription factors that regulate auxin responses in various aspects of plant growth and development. Although genome-wide analysis of ARF gene family has been done in some species, no information is available regarding ARF genes in chickpea. In this study, we identified 28 ARF genes (CaARF) in the chickpea genome. Phylogenetic analysis revealed that CaARFs can be divided into four different groups. Duplication analysis revealed that 50% of CaARF genes arose from duplication events. We analyzed expression pattern of CaARFs in various developmental stages. CaARF16.3, CaARF17.1 and CaARF17.2 showed highest expression at initial stages of flower bud development, while CaARF6.2 had higher expression at later stages of flower development. Further, CaARF4.2, CaARF9.2, CaARF16.2 and CaARF7.1 exhibited differential expression under different abiotic stress conditions, suggesting their role in abiotic stress responses. Co-expression network analysis among CaARF, CaIAA and CaGH3 genes enabled us to recognize components involved in the regulatory network associated with CaARFs. Further, we identified microRNAs that target CaARFs and TAS3 locus that trigger production of trans-acting siRNAs targeting CaARFs. The analyses presented here provide comprehensive information on ARF family members and will help in elucidating their exact function in chickpea.
This work is financially supported by the Department of Biotechnology (DBT) Government of India under the Challenge Programme on Chickpea Functional Genomics (BT/AGR/CG-PhaseII/01/2014), core grant from the NIPGR and infrastructural facility by the Jawaharlal Nehru University, New Delhi. VKS acknowledges the receipt of research fellowship from the DBT.
 
Date 2017-09-11T09:48:13Z
2017-09-11T09:48:13Z
2017
 
Type Article
 
Identifier Scientific Reports, 7(1): 10895
2045-2322
http://223.31.159.10:8080/jspui/handle/123456789/783
https://www.nature.com/articles/s41598-017-11327-5
10.1038/s41598-017-11327-5
 
Language en_US
 
Publisher Nature Publishing Group