Record Details

Synthesis of Conceptual Designs for Sensors

Electronic Theses of Indian Institute of Science

View Archive Info
 
 
Field Value
 
Title Synthesis of Conceptual Designs for Sensors
 
Creator Sarkar, Biplab
 
Subject Engineering Design
Concept Space
Conceptual Design Synthesis
Sensor
SAPPhIRE Model
Direct Sensing Designs
Direct Sensing Algoritham
User Interface Design
Soil Moisture Sensor
Conceptual Design
Sensor Designs
SAPPhIRE-lite
Design for Sensors
Conceptual Structures
Product Design and Manufacturing
 
Description National Programme on Micro and Smart Materials and Systems (NPMASS)
A computer-aided technique is developed in this thesis to systematically
generate concepts for sensors of a wide variety. A database of building
blocks, based on physical laws and effects that capture the transduction
rules underlying the working principles of sensors, has been developed to
synthesize concepts. The proposed method uses the database to first create
a concept-space graph and then selects concepts that correspond to paths
in the graph. This is in contrast to and more efficient than existing
methods, such as, compositional synthesis and graph-grammar synthesis,
where solution paths are laid out first and then a concept-space graph is
generated. The research also explores an approach for synthesis of
concepts for closed-loop sensors, where a quantity is sensed indirectly
after nullifying its effect by using negative feedback. These sensors use
negative feedback to increase the dynamic range of operation without
compromising the sensitivity and resolution. According to the literature,
generation of un-interesting solutions is a major drawback of the building
block-based synthesis approaches. In the proposed approach, this
shortcoming is mitigated substantially by using some rules. For a number
of the concepts generated, in the sensor problems attempted, we found
that those concepts were already implemented in existing patents; thus
emphasising the usefulness of the concepts produced. The synthesis
approach proposed new, feasible sensor concepts, thereby indicating its
potential as a stimulator for enhancing creativity of designers.

Another important problem is to improve the robustness of designs.
Robustness can be achieved by minimizing the side effects. Side effects
are defined as unwanted effects that affect the intended working of the
sensor. The research presents an algorithm that (a) predicts the potential
side effects for the synthesized concepts of sensors; (b) aids in
quantifying the magnitude of the side effects, thus helping the designer
to predict the significant side effects; and (c) suggests ways to improve
the robustness of the design.
 
Contributor Chakrabarti, Amaresh
Ananthasuresh, G K
 
Date 2017-11-24T05:05:16Z
2017-11-24T05:05:16Z
2017-11-24
2015
 
Type Thesis
 
Identifier http://etd.iisc.ernet.in/handle/2005/2792
http://etd.ncsi.iisc.ernet.in/abstracts/3301/G27584-Abs.pdf
 
Language en_US
 
Relation G27584