Structural Studies on DNA Damage Inducible Protein 1 (Ddi1) of Leishmania and the Rotavirus Nonstructural Protein NSP4
Electronic Theses of Indian Institute of Science
View Archive InfoField | Value | |
Title |
Structural Studies on DNA Damage Inducible Protein 1 (Ddi1) of Leishmania and the Rotavirus Nonstructural Protein NSP4
|
|
Creator |
Kumar, Sushant
|
|
Subject |
Rotavirus Nonstructural Protein NSP4
DNA Damage Inducible Protein (Ddi1) Retroviral Protease Domain (RVP) Ubiquitin-Like Domain (UBL) Ubiquitin Associated Domain (UBA) Nonstructural Protein 4 Rotavirus Strain MF66 Leishmania Major Molecular Biophysics |
|
Description |
Structuraj investigations on the Ddi1 (DNA-damage inducible protein 1) of Leishmania major and on the rotavirus nonstructural protein NSP4 were carried out. Ddi1 belongs to the ubiquitin receptor family of proteins. One of its domains is similar to the retroviral aspartic proteinases. It has been shown that this domain is the target of HIV-protease inhibitors that were being used in the treatment of AIDS and it was observed that these drugs effectively controlled opportunistic diseases caused by many parasitic protozoa such as Leishmania and Plasmodium species. The retroviral protease-like domains present in Ddi1 proteins of these organisms were identified as the targets of these drugs. Structural studies on Ddi1 from L. major have been carried out, in an attempt to provide a platform for the design of anti-protozoal compounds. Rotavirus NSP4, the first viral enterotoxin to be identified, is a multifunctional glycoprotein that plays critical roles in viral pathogenesis and morphogenesis. As part of an ongoing project on the structural characterization of NSP4, we determined the structure of the diarrhea-inducing region of this protein from the rotavirus strain MF66. Chapter 1 presents an overview of Ddi1 and NSP4 of the rotavirus with an emphasis on their structural features. The methods employed during the course of the present work are described in Chapter 2. Structural studies on the retroviral protease-like domain of Ddi1 (Ddi1-RVP) of L. major is presented in Chapter 3. Apart from this domain, Ddi1 of L. major also has a ubiquitin-associated and ubiquitin-like domains whereas P. falciparum has only the ubiquitin-associated domain. Activity of the full length Ddi1 of L. major and the retroviral protease domain of P. falciparum using an HIV protease substrate was shown to be inhibited by an HIV protease inhibitor, saquinavir. Binding of saquinavir to the proteins was also confirmed by Biolayer Interferometry studies. The crystal structure of the retroviral protease domain of L. major Ddi1 has been determined. It forms a homodimeric structure similar to that of HIV protease and the reported structure of the same domain from Saccharomyces cerevisiae. The loops in Ddi1-RVP are similar to the 'flap' regions of the HIV protease which close-in upon substrate/inhibitor binding; they are visible in the electron density maps, unlike the case of the S. cerevisiae protein. Though the native form of the domain shows an open dimeric structure, normal mode analysis reveals that it can take up a closed conformation resulting from relative movements of the subunits. The present structure of Ddi1-RVP of L. major with the defined 'flap'-like loops will be helpful in the design of effective drugs against protozoal diseases, starting with HIV protease inhibitors as the lead compounds. Chapter 4 describes the structural investigations carried out on the diarrhea-inducing region of the nonstructural protein NSP4 of the rotavirus strain MF66 which forms an α-helical coiled-coil structure. Crystal structures of a synthetic peptide and of two recombinant proteins spanning this region showed parallel tetrameric organization of this domain with a bound Ca2+ ion at the core. Subsequently, we determined the structure of NSP4 from a different strain as a pentamer without the bound Ca2+ ion. This new structure provides more insights into understanding some of the functions of NSP4 such as the release of ions into the cytoplasm and binding to the double-layered particle (DLP). We also established conditions responsible for these structural transitions. The crystal structure of the coiled-coil domain of NSP4 presented in this chapter shows an entirely different structure which is an antiparallel tetramer. This explains our failure to determine the structure by the molecular replacement method using known oligomers. The structure was solved by the Sulphur-SAD method using diffraction data collected with Cr Ka radiation. The study reveals that the structural diversity of NSP4 is not limited. We could relate sequence variations and pH conditions to the differences in oligomeric assemblies. Surface properties of the domain suggest that the new form is likely to interact with different sets of proteins compared to those that interact with the parallel tetramers or pentamers. Further investigations are needed to establish this property. |
|
Contributor |
Suguna, K
|
|
Date |
2018-01-17T04:31:06Z
2018-01-17T04:31:06Z 2018-01-17 2016 |
|
Type |
Thesis
|
|
Identifier |
http://hdl.handle.net/2005/3018
http://etd.ncsi.iisc.ernet.in/abstracts/3881/G27764-Abs.pdf |
|
Language |
en_US
|
|
Relation |
G27764
|
|