Record Details

Cytosolic Lysophosphatidic Acid Acyltransferase : Implications in Lipid Biosynthesis in Yeast, Plants and Human

Electronic Theses of Indian Institute of Science

View Archive Info
 
 
Field Value
 
Title Cytosolic Lysophosphatidic Acid Acyltransferase : Implications in Lipid Biosynthesis in Yeast, Plants and Human
 
Creator Ghosh, Ananda Kumar
 
Subject Lipid Biosynthesis
Cytosolic LPA Acyltransferase
Arabidopsis
Human Cytosolic LPA Acyltansferse
Yeast - Lipid Biosynthesis
Plants - Lipid Biosynthesis
Human Lipid Biosynthesis
Lysophosphatidic Acid Acyltransferase
Saccharomyces Cerevisiae - Cystolic LPA Acyltransferase
Arabidopsis Thaliana - Cystolic LPA Acyltransferase
Biochemistry
 
Description Cytosolic LPA acyltransferase in yeast
An isooctane tolerant strain of S. cerevisiae KK-12 was reported to have increased saturated fatty acid content (Miura et. al., 2000). Amongst the various genes upregulated on isooctane treatment, ICT1 (Increased Copper Tolerance 1) was
found to have maximal expression (Miura et. al., 2000; Matsui et. al., 2006). This
gene in S. cerevisiae is encoded by YLR099C annotated as Ict1p. However, the physiological significance of Ict1p was not understood. Here we showed that an
increase in the synthesis of phosphatidic acid (PA) is responsible for enhanced
phospholipid synthesis, which confers organic solvent tolerance to S. cerevisiae.
This increase in the PA formation is due to the upregulation of Ict1p, a soluble
oleoyl-CoA dependent lysophosphatidic acid (LPA) specific acyltransferase.
Analysis of Δict1 strain by in vivo [32P]orthophosphate labeling showed a drastic reduction in PA, suggesting the role of Ict1p in phospholipid biosynthesis.
Overexpression of Ict1p in S. cerevisiae showed an increase in PA and the overall
phospholipid content on organic solvent exposure. The purified recombinant
enzyme was found to specifically acylate LPA. Specific activity of Ict1p was found
to be higher for oleoyl-CoA as compared to palmitoyl-CoA and stearoyl-CoA. The
study therefore, provides a mechanistic basis of solvent tolerance in S. cerevisiae.It is well known that phosphatidic acid (PA) is formed by the acylation of LPA by LPA acyltransferase. However, all the LPA acyltransferases characterized till date have distinct transmembrane domains and form a member of membrane bound biosynthetic machinery of phospholipid biosynthesis. They have a conserved signature motif, H(X)4D. Phosphatidic acid is an important precursor for the synthesis of glycerophospholipids and triacylglycerols. PA enters the biosynthetic pathway of phospholipids through a CTP-dependent activation catalyzed by CDPdiacylglycerol synthase. This enzyme forms CDP-diacylglycerol, which serves as a
direct precursor for phosphatidylinositol, phosphatidylglycerol and cardiolipin. PA
can also be dephosphorylated by phosphatidic acid phosphatase yielding diacylglycerol, which serves as a precursor for the formation of PE and PC through the CDP-ethanolamine and CDP-choline pathway or for the triacylglycerol synthesis through a dephosphorylation step followed by an acylation establishing it as a supreme molecule for the acylglycerol biosynthesis.
Since, PA is an important intermediate and that there are mechanisms to synthesize PA, other than the conventional membrane bound pathways, we wanted to understand whether such a mechanism of PA biosynthesis is conserved across the plant and animal kingdom. Therefore, we resorted to analyze Ict1p like proteins in
Arabidopsis and human whose complete genome sequence is available.
Cytosolic LPA acyltransferase in Arabidopsis
Homology search with ICT1 in Arabidopsis thaliana genome, led to the
identification of At4g24160 as a close relative. In order to gain an insight into the
significance of such proteins in plants we performed a genome wide survey of
At4g24160 like proteins in Arabidopsis. We identified that A. thaliana genome
encodes twenty four At4g24160 like proteins, most of which belong to the α/β-
hydrolase family of proteins and possess a distinct lipase motif (GXS/NXG).
Interestingly, amongst these twenty four, only At4g24160 has a conserved HX4D
motif. Domain analysis of these proteins suggests a wide functional diversification
during evolution. Gene expression studies revealed their importance during various
abiotic stress.
Bacterial expression of At4g24160 followed by its purification using Ni2+-NTA column chromatography and characterization revealed it to be a LPA acyltransferase. Expression analysis showed that it is highly expressed in the pollen grains followed by the root cap. In addition, the gene was found to be upregulated under salt stress conditions. Direct correlation between salt stress and phospholipid biosynthesis is well known in the literature. We envisage that At4g24160 might be one of the gene products involved in membrane repair when exposed to such a
stressCytosolic LPA acyltransferase in human
Homology search with Ict1p revealed another interesting candidate protein in Homo
sapiens known as Comparative Gene Identification–58 (cgi-58). Mutations in CGI-
58 are known to be the causative reason for a rare autosomal recessive genetic
disorder known as Chanarin-Dorfman syndrome characterized by the excessive TG
accumulation and defective membrane phospholipid regulation in several tissues. It
is known to be a coactivator of adipose triglyceride lipase (ATGL), promoting
lipolysis of TG (Lass et. al., 2006). However, the exact biochemical role remains
unknown. To understand the biochemical function of cgi-58, the gene was
overexpressed in E. coli and the purified, recombinant protein was found to
specifically acylate lysophosphatidic acid in an acyl-CoA dependent manner.
Overexpression of CGI-58 in Δict1 rescued the metabolic defect of the strain.
Heterologous overexpression of CGI-58 in S. cerevisiae followed by metabolic labeling with [32P]orthophosphate showed an increased biosynthesis of membrane phospholipids. Analysis of neutral lipid biosynthesis by [14C]acetate labeling showed an increase in DG and free fatty acids. However, marked decrease in the TG biosynthesis was seen. Decrease in TG was confirmed by ESI-MS. In addition, physiological significance of cgi-58 in the mice white adipose tissue is reported in this thesis. We found soluble lysophosphatidic acid acyltransferase activity in the mice white adipose tissue. Immunoblot with anti-Ict1p antibodies followed by MALDI-TOF analysis of the cross reacting protein in lipid droplets revealed its identity as cgi-58. These observations suggest the existence of an alternate cytosolic phosphatidic acid biosynthetic pathway in the white adipose tissue. Collectively, our observations suggest a possible involvement of cgi-58 in the phospholipid biosynthesis of adipocytes and its probable role in maintaining the TG homeostasis.
In conclusion, the study reveals the significance of cytosolic lipid metabolic enzymes having conserved biochemical function, in maintaining homeostasis in living organisms across phylogeny.
 
Contributor Rajasekharan, Ram
 
Date 2018-02-11T13:17:52Z
2018-02-11T13:17:52Z
2018-02-11
2008-07
 
Type Thesis
 
Identifier http://hdl.handle.net/2005/3094
http://etd.ncsi.iisc.ernet.in/abstracts/3259/G22615(Abs).pdf
 
Language en_US
 
Relation G22615