Record Details

Anodized Zirconia Nanostructures

Electronic Theses of Indian Institute of Science

View Archive Info
 
 
Field Value
 
Title Anodized Zirconia Nanostructures
 
Creator Choudhury, Tanushree H
 
Subject Electrochemical Anodization
Anodized Zirconia Nanostructures
Zirconia Nanostructures - Anodization
Sputtered Zirconium Thin Film Aniodization
Anodized Ytrria-Zirconia Nanostructures
Anodic Nanostructured Zirconia
Zirconium-Yttrium Films - Aniodization
Nanotechnology
 
Description Electrochemical anodization is a facile technique to synthesize ordered oxide nanostructures. Though the number of materials exhibiting anodized nanostructures has increased considerably in the recent years, only nanoporous alumina and nanotubular titania have been investigated extensively for various applications. Anodized nanostructures, nanotubes and nanopores, of zirconia are also of considerable interest for applications such as templates, sensors and solid-oxide fuel cells. In spite of the potential applications of zirconia, these nanostructures have been barely studied. As most of these applications require elevated temperatures in excess of 400C, thermal stability becomes an important attribute. Even though zirconia (Tm=2715C) has as higher melting point than alumina(Tm = 2072C), literature reports and initial research showed that the thermal stability of anodized zirconia was limited to 500C-1 h compared to 1000C-4 h for alumina. The work carried out as a part of this research showed that halide ions used in the synthesis are the possible cause for the lower thermal stability. Chemical treatment of the zirconia membranes to neutralize the halide ions helped enhance the stability to 1000C-1 h, thus, improving their usability for most of the applications mentioned above. Most of the current reported work on aluminum, zirconium, and titanium is predominantly limited to anodization of foils which can only yield free-standing nanostructures. As synthesis of these nanostructures on a substrate would further facilitate their usage, supported anodized zirconia nanostructures were synthesized by anodizing sputtered zirconium films. This study showed that the anodized morphology depends strongly on the sputtered film microstructure, which changes in accordance with the Thornton’s zone diagrams. A general approach thus developed is expected to be applicable to anodization of all metallic films. Most applications involving zirconia also require stabilization against a tetragonal-monoclinic phase transformation by suitable alloying such as with yttria. Towards this end, routes to develop anodized yttria-stabilized zirconia nanostructures, which are nonexistent, were explored. The synthesis of yttria stabilized zirconia nanostructures with no detectable monoclinic phase was achieved. Yttrium alloying using a solution treatment was found to enhance stability of the supported nanostructures to 900C-16 h, which makes it possible to now evaluate these nanostructures, especially for micro-SOFC applications.
 
Contributor Raghavan, Srinivasan
 
Date 2018-05-01T05:30:23Z
2018-05-01T05:30:23Z
2018-05-01
2013
 
Type Thesis
 
Identifier http://etd.iisc.ernet.in/2005/3462
http://etd.iisc.ernet.in/abstracts/4329/G25876-Abs.pdf
 
Language en_US
 
Relation G25876