Record Details

Functionalized Nanostructures : Iron Oxide Nanocrystals and Exfoliated Inorganic Nanosheets

Electronic Theses of Indian Institute of Science

View Archive Info
 
 
Field Value
 
Title Functionalized Nanostructures : Iron Oxide Nanocrystals and Exfoliated Inorganic Nanosheets
 
Creator Chalasani, Rajesh
 
Subject Nanostructures
Iron Oxide Nanocrystals
Exfoliated Inorgnaic Nanosheets
Iron Oxide Nanocrystals
Magnetic Nanocrystals
Magnetic Nanoparticles
Magnetic Iron Oxide Nanocrystals
Magnetic Nanoparticles
Surfactant Intercalation
Layered Materials - Delamination
Fe3O4@TiO2
Inorganic Nanosheets
Layered Double Hydroxide
Oleate Capped Magnetite Nanocrystals
Nanotechnology
 
Description This thesis consists of two parts. The first part deals with the magnetic properties of Fe3O4 nanocrystals and their possible application in water remediation. The second part is on the delamination of layered materials and the preparation of new layered hybrids from the delaminated sheets.
In recent years, nanoscale magnetic particles have attracted considerable attention because of their potential applications in industry, medicine and environmental remediation. The most commonly studied magnetic nanoparticles are metals, bimetals and metal oxides. Of these, magnetite, Fe3O4, nanoparticles have been the most intensively investigated as they are, non-toxic, stable and easy to synthesize. Magnetic properties of nanoparticles such as the saturation magnetization, coercivity and blocking temperature are influenced both by size and shape. Below a critical size magnetic particles can become single domain and above a critical temperature (T B , the blocking temperature) thermal fluctuations can induce random flipping of magnetic moments resulting in loss of magnetic order. At temperatures above the blocking temperature the particles are superparamagnetic. Magnetic nanocrystals of similar dimensions but with different shapes show variation in magnetic properties especially in the value of the blocking temperature, because of differences in the surface anisotropy contribution. The properties of magnetic nanoparticles are briefly reviewed in Chapter 1. The objective of the present study was to synthesize Fe3O4 nanocrystals of different morphologies, to understand the difference in magnetic properties associated with shape and to explore the possibility of using Fe3O4 nanocrystals in water remediation.
In the present study, oleate capped magnetite (Fe3O4) nanocrystals of spherical and cubic morphologies of comparable dimensions (∼10nm) have been synthesized by thermal decomposition of FeOOH in high-boiling octadecene solvent (Chapter 2). The nanocrystals were characterized by XRD, TEM and XPS spectroscopy. The nanoparticles of different morphologies exhibit very different blocking temperatures. Cubic nanocrystals have a higher blocking temperature (T B = 190 K) as compared to spheres (T B = 142 K). From the shift in the hysteresis loop it is demonstrated that the higher blocking temperature is a consequence of exchange bias or exchange anisotropy that manifests when a ferromagnetic material is in physical contact with an antiferromagnetic material. In nanoparticles, the presence of an exchange bias field leads to higher blocking temperatures T B because of the magnetic exchange coupling induced at the interface between the ferromagnet and antiferromagnet. It is shown that in these iron oxide nanocrystals the exchange bias field originates from trace amounts of the antiferromagnet wustite, FeO, present along with the ferrimagnetic Fe3O4 phase. It is also shown that the higher FeO content in nanocrystals of cubic morphology is responsible for the larger exchange bias fields that in turn lead to a higher blocking temperature.
Magnetic nanoparticles with moderate magnetization can be easily separated from dispersions by applying low intensity magnetic fields. Oleate capped spherical and cubic iron oxide nanocrystals have considerable magnetic moment and hence have the potential as host-carriers for magnetic separation in environmental remediation. These nanocrystals are, however, dispersible only in non-polar solvents like chloroform, toluene, etc. Environmental remediation requires that the nanocrystals be water dispersible. This was achieved by functionalizing the surface of the iron oxide nanocrystals by coordinating carboxymethyl-β-cyclodextrin (CMCD) cavities (Chapter 3). The hydroxyl groups located at the rim of the anchored cyclodextrin cavity renders the surface of the functionalized nanocrystal hydrophilic. The integrity of the anchored CMCD molecules are preserved on capping and their hydrophobic cavities available for host-guest chemistry. The CMCD capped iron oxide particles are water dispersible and separable in modest magnetic fields (
 
Contributor Vasudevan, S
 
Date 2018-05-01T05:56:04Z
2018-05-01T05:56:04Z
2018-05-01
2013
 
Type Thesis
 
Identifier http://etd.iisc.ernet.in/2005/3463
http://etd.iisc.ernet.in/abstracts/4330/G25877-Abs.pdf
 
Language en_US
 
Relation G25877