Record Details

Electric Stimuli as Instructive Cues to Guide Cellular Differentiation on Electrically Conductive Biomaterial Substrates in vitro

Electronic Theses of Indian Institute of Science

View Archive Info
 
 
Field Value
 
Title Electric Stimuli as Instructive Cues to Guide Cellular Differentiation on Electrically Conductive Biomaterial Substrates in vitro
 
Creator Greeshma, T
 
Subject Tissue and Organ Culture
Biomaterial Substrates
Electroactive Ceramic Substrates
Electroactive Nano Particles
Stem Cells
Stem Cell Niche
Myoblast Cell Proliferation
Osteogenesis
Human Mesenchymal Stem Cell
Stem Cell Differentiation
Nano Science and Engineering
 
Description Directing differential cellular response by manipulating the physical characteristics of the material is regarded as a key challenge in biomaterial implant design and tissue engineering. In developing various biomaterials, the influence of substrate properties, like surface topography, stiffness and wettability on the cell functionality has been investigated widely. However, such study to probe into the influence of substrate conductivity on cell fate processes is rather limited. The need for such an understanding is based on the fact that specific tissues in the body are electrically active in nature, such as in brain, heart and skeletal muscle. These tissues make use of electrical conductivity as an effective cue for tissue homeostasis, development, regeneration and so on. Moreover, understanding the importance of underlying conductivity in basic biological processes is essential in developing electrically conductive biomaterials with the ability to simulate normal electrophysiology of the body by interfacing with bioelectric fields in cells and tissues. Electrical stimulation and charge conduction can regulate numerous intracellular signalling pathways, can interact with cytoskeleton proteins to modulate the morphology, increase protein synthesis and on the more can favor the ECM protein conformational changes. On these grounds, the present dissertation illustrates that persistent electrical activation influences the multipotency of hMSCs and acts like a promoter towards selective differentiation of hMSCs into neural/cardiomyogenic or osteogenic lineage. Besides, continual exposure to electric field stimulated conducting culture environments lead to growth arrest while enhancing differentiation. In total, this dissertation suggests the dominant role of conductivity in inducing my oblast differentiation and hMSc lineage commitment that involves EF stimulated in vitro culture conditions. Also, a knowledge base with qualitative and quantitative understanding of stem cells and their response to substrate physical properties and external field effect was developed through this comprehensive study. Such an improved understanding of the ability of hMSCs in sensing electrical conductivity may lead to the development of culture additives/conditions that better induce directed stem cell differentiation.
 
Contributor Basu, Bikramjit
 
Date 2018-08-10T13:05:57Z
2018-08-10T13:05:57Z
2018-08-10
2015
 
Type Thesis
 
Identifier http://etd.iisc.ernet.in/2005/3938
http://etd.iisc.ernet.in/abstracts/4833/G27217-Abs.pdf
 
Language en_US
 
Relation G27217