Record Details

Exploring Combined Effect of Abiotic (Soil Moisture) and Biotic (Sclerotium rolfsii Sacc.) Stress on Collar Rot Development in Chickpea

OAR@ICRISAT

View Archive Info
 
 
Field Value
 
Relation http://oar.icrisat.org/10830/
http://dx.doi.org/10.3389/fpls.2018.01154
10.3389/fpls.2018.01154
 
Title Exploring Combined Effect of Abiotic (Soil Moisture) and Biotic (Sclerotium rolfsii Sacc.) Stress on Collar Rot Development in Chickpea
 
Creator Tarafdar, A
Rani, T S
Chandran, U S S
Ghosh, R
Chobe, D R
Sharma, M
 
Subject Abiotic Stress
Biotic Stress
Chickpea
Genetics and Genomics
Plant Pathology
Legume Crops
 
Description Plants being sessile are under constant threat of multiple abiotic and biotic stresses within its natural habitat. A combined stress involving an abiotic and a biotic factor reportedly increases susceptibility of the plants to pathogens. The emerging threat, collar rot disease of chickpea (caused by Sclerotium rolfsii Sacc.) is reported to be influenced by soil moisture condition (SMC). Hence, we studied the influence of differential SMC viz. upper optimum (100%), optimum (80%), lower optimum (60%), and limiting (40%) soil moisture conditions on colonization and collar rot development over the course of infection in two chickpea cultivars, Annigeri (susceptible to collar rot) and ICCV 05530 (moderately resistant to collar rot). Disease incidence was found to be directly proportional to increase in soil moisture (R2 = 0.794). Maximum incidence was observed at 80% SMC, followed by 100 and 60% SMC. Expression of genes (qPCR analysis) associated with host cell wall binding (lectin) and degradation viz. endopolygalacturonase-2, endoglucosidase, and cellobiohydrolase during collar rot development in chickpea were relatively less at limiting soil moisture condition (40%) as compared to optimum soil moisture condition (80%). As compared to individual stress, the expression of defense response genes in chickpea seedlings were highly up-regulated in seedlings challenged with combined stress. Our qPCR results indicated that the expression of defense-related genes in chickpea during interaction with S. rolfsii at low SMC was primarily responsible for delayed disease reaction. Involvement of moisture and biotic stress-related genes in combined stress showed a tailored defense mechanism.
 
Publisher Frontiers Media
 
Date 2018-08
 
Type Article
PeerReviewed
 
Format application/pdf
 
Language en
 
Rights
 
Identifier http://oar.icrisat.org/10830/1/fpls-09-01154.pdf
Tarafdar, A and Rani, T S and Chandran, U S S and Ghosh, R and Chobe, D R and Sharma, M (2018) Exploring Combined Effect of Abiotic (Soil Moisture) and Biotic (Sclerotium rolfsii Sacc.) Stress on Collar Rot Development in Chickpea. Frontiers in Plant Science (TSI), 9 (1154). pp. 1-13. ISSN 1664-462X