Diffraction Tomographic Imaging With A Circular Array
Electronic Theses of Indian Institute of Science
View Archive InfoField | Value | |
Title |
Diffraction Tomographic Imaging With A Circular Array
|
|
Creator |
Vasuki, A
|
|
Subject |
Electrical Engineering
Optical Data Processing Diffraction Tomography Image Analysis — |
|
Description |
In the conventional diffraction tomography a linear array is used to receive forward scattered field. Then a standard algorithm like back propagation or Fourier domain interpolation is used for reconstruction of the object. A circular array which captures both forward and backward scattered field has been proposed. A new theorem is proposed, which states that the scattered field measured with a large circular array surrounding the object is proportional to the Fourier transform of the object profile taken on the circumference of a circle of radius equa1 to the wave number and centered at (-k0 cosZO, -k0 sin Z0). The circular array outperforms in two counts. Firstly, a larger bandwidth of Fourier transform is used for reconstruction. Secondly, in circular array since the scattered field itself is related to the object Fourier transform, the reconstruction is free from the errors induced by finite array size. The effect of broad band illumination has been studied. A fewer number of illuminations appear to produce a reconstruction which is possible only with a large number of illuminations but narrow band illumination. Thus a trade off between the number of illumination angles and the bandwidth of the source exists.
|
|
Publisher |
Indian Institute of Science
|
|
Contributor |
Naidu, P S
|
|
Date |
2005-06-02T06:06:00Z
2005-06-02T06:06:00Z 2005-06-02T06:06:00Z 1994-10 |
|
Type |
Electronic Thesis and Dissertation
|
|
Format |
3332456 bytes
application/pdf |
|
Identifier |
http://etd.iisc.ernet.in/handle/2005/119
null |
|
Language |
en
|
|
Rights |
I grant Indian Institute of Science the right to archive and to make available my thesis or dissertation in whole or in part in all forms of media, now hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.
|
|