Synthesis Of Bioactive Marine Meroterpenoids : Frondosins And Liphagal
Electronic Theses of Indian Institute of Science
View Archive InfoField | Value | |
Title |
Synthesis Of Bioactive Marine Meroterpenoids : Frondosins And Liphagal
|
|
Creator |
Shripad, Likhite Nachiket
|
|
Subject |
Biosynthesis
Terpenoids - Synthesis Meroterpenoids Frondosins Liphagal Marine Natural Products - Synthesis Meroterpenoid Organic Chemistry |
|
Description |
The sea conceals a mermaid’s grotto of useful chemicals-marine natural products of therapeutic potential. Marine sponges in particular are a rich source of natural products with structural diversity and novel biological activity. In recent times, there has been a growing interest in the synthesis of marine natural products. The present thesis entitled, “Synthesis of bioactive marine meroterpenoids: frondosins and liphagal” is an endeavor along the same lines and is organized under two parts –Part A and Part B. Part A: Studies towards the total synthesis of (±) frondosins A and B Frondosins A-E are IL-8 inhibiting marine meroterpenoids, with novel bicyclo[5.4.0]undecane framework, exhibiting anti-inflammatory and anti HIV-1 activities. A relatively simple and inherently flexible ring-closing metathesis (RCM) based strategy was employed to achieve the total synthesis of frondosins A (formal) and B in only 17 linear steps (total 13 operations) and 5% overall yield. A concise route, based on RCM, to the core structure of bioactive frondosins is amenable to ready appendage diversification and enables implementation of functionalization manoeuvres on all positions in the seven-membered ring of the bicyclic framework was also developed. A Diels-Alder strategy that led to the synthesis of 8-des-methyl norfrondosin A dimethyl ether is also delineated in Part A of the thesis. Part B: A concise synthesis of (±) liphagal Liphagal is a marine meroterpenoid displaying an unprecedented “liphagane” skeleton. It is a selective inhibitor of PI3K and significantly toxic against a small panel of human tumor cell lines (LoVo, CaCo-human colon and MDA-468-human breast). A concise and straightforward biomimetic strategy towards liphagal and its 14-des-formyl analogue that awarded liphagal dimethyl ether in only eight steps from commercially available building blocks is described in Part B of the thesis. |
|
Contributor |
Mehta, Goverdhan
|
|
Date |
2013-05-20T09:52:05Z
2013-05-20T09:52:05Z 2013-05-20 2009-10 |
|
Type |
Thesis
|
|
Identifier |
http://etd.iisc.ernet.in/handle/2005/1993
http://etd.ncsi.iisc.ernet.in/abstracts/2581/G23511-Abs.pdf |
|
Language |
en_US
|
|
Relation |
G23511
|
|