Record Details

A Study Of The Metric Induced By The Robin Function

Electronic Theses of Indian Institute of Science

View Archive Info
 
 
Field Value
 
Title A Study Of The Metric Induced By The Robin Function
 
Creator Borah, Diganta
 
Subject Robin Function
Metric (Robin Function)
Robin Function - Boundary Behavior
Metric - Boundary Behavior
Λ-metric
Mathematics
 
Description Let D be a smoothly bounded domain in Cn , n> 1. For each point p _ D, we have the Green function G(z, p) associated to the standard sum-of-squares Laplacian Δ with pole at p and the Robin constant __
Λ(p) = lim G(z, p) −|z − p−2n+2
z→p |
at p. The function p _→ Λ(p) is called the Robin function for D.
Levenberg and Yamaguchi had proved that if D is a C∞-smoothly bounded pseudoconvex domain, then the function log(−Λ) is a real analytic, strictly plurisubharmonic exhaustion function for D and thus induces a metric
ds2 = n∂2 log(−Λ)(z) dzα ⊗ dzβ
z
∂zα∂zβ
α,β=1
on D, called the Λ-metric. For an arbitrary C∞-smoothly bounded domain, they computed the boundary asymptotics of Λ and its derivatives up to order 3, in terms of a defining function for the domain. As a consequence it was shown that the Λ-metric is complete on a C∞-smoothly bounded strongly pseudoconvex domain or a C∞-smoothly bounded convex domain.
In this thesis, we study the boundary behaviour of the function Λ and its derivatives of all orders near a C2-smooth boundary point of an arbitrary domain. We compute the boundary asymptotics of the Λ-metric on a C∞-smoothly bounded pseudoconvex domain and as a consequence obtain that on a C∞-smoothly bounded strongly pseudoconvex domain, the Λ-metric is comparable to the Kobayashi metric (and hence to the Carath´eodory and the Bergman metrics). Using the boundary asymptotics of Λ and its derivatives, we calculate the holomorphic sectional curvature of the Λ-metric on a C∞-smoothly bounded strongly pseudoconvex domain at points on the inner normals and along the normal directions. The unit ball in Cn is also characterised among all C∞-smoothly bounded strongly convex domains on which the Λ-metric has constant negative holomorphic sectional curvature. Finally we study the stability of the Λ-metric under a C2 perturbation of a C∞-smoothly bounded pseudoconvex domain.
(For equation pl refer the abstract pdf file)
 
Contributor Verma, Kaushal
 
Date 2013-09-13T05:25:08Z
2013-09-13T05:25:08Z
2013-09-13
2010-07
 
Type Thesis
 
Identifier http://etd.iisc.ernet.in/handle/2005/2240
http://etd.ncsi.iisc.ernet.in/abstracts/2854/G23806-Abs.pdf
 
Language en_US
 
Relation G23806