Record Details

Threshold Tolerance of New Genotypes of Pennisetum glaucum (L.) R. Br. to Salinity and Drought

OAR@ICRISAT

View Archive Info
 
 
Field Value
 
Relation http://oar.icrisat.org/10899/
http://dx.doi.org/10.3390/agronomy8100230
10.3390/agronomy8100230
 
Title Threshold Tolerance of New Genotypes of Pennisetum glaucum (L.) R. Br. to Salinity and Drought
 
Creator Toderich, K
Shuyskaya, E
Rakhmankulova, Z
Bukarev, R
Khujanazarov, T
Zhapaev, R
Ismail, S
Gupta, S K
Yamanaka, N
Boboev, F
 
Subject Abiotic Stress
Plant Genetics
Pearl Millet
Crop Physiology
Drought
Genetics and Genomics
 
Description With continued population growth, increasing staple crop production is necessary. However, in dryland areas, this is negatively affected by various abiotic stresses, such as drought and salinity. The field screening of 10 improved genetic lines of pear millet originating from African dryland areas was conducted based on a set of agrobiological traits (i.e., germination rate, plant density, plant maturity rate, forage, and grain yields) in order to understand plant growth and its yield potential responses under saline environments. Our findings demonstrated that genotype had a significant impact on the accumulation of green biomass (64.4% based on two-way ANOVA), while salinity caused reduction in grain yield value. HHVBC Tall and IP 19586 were selected as the best-performing and high-yielding genotypes. HHVBC Tall is a dual purpose (i.e., forage and grain) line which produced high grain yields on marginal lands, with soil salinization up to electrical conductivity (EC) 6–8 dS m−1 (approximately 60–80 mM NaCl). Meanwhile, IP 19586, grown under similar conditions, showed a rapid accumulation of green biomass with a significant decrease in grain yield. Both lines were tolerant to drought and sensitive to high salinity (above 200 mM NaCl). The threshold salinity of HHVBC Tall calculated at the seedling stage was lower than that of IP 19586. Seedling viability of these lines was affected by oxidative stress and membrane peroxidation, and they had decreased chlorophyll and carotenoid biosynthesis. This study demonstrated that ionic stress is more detrimental for the accumulation of green and dry biomass, in combination with increasing the proline and malonic dialdehyde (MDA) contents of both best-performing pearl millet lines, as compared with osmotic stress.
 
Publisher MDPI
 
Date 2018
 
Type Article
PeerReviewed
 
Format application/pdf
 
Language en
 
Rights
 
Identifier http://oar.icrisat.org/10899/1/agronomy-08-00230.pdf
Toderich, K and Shuyskaya, E and Rakhmankulova, Z and Bukarev, R and Khujanazarov, T and Zhapaev, R and Ismail, S and Gupta, S K and Yamanaka, N and Boboev, F (2018) Threshold Tolerance of New Genotypes of Pennisetum glaucum (L.) R. Br. to Salinity and Drought. Agronomy, 8 (10) (230). pp. 1-13. ISSN 2073-4395