Record Details

Genomic Designing of Pearl Millet: A Resilient Crop for Arid and Semi-arid Environments

OAR@ICRISAT

View Archive Info
 
 
Field Value
 
Relation http://oar.icrisat.org/11383/
https://doi.org/10.1007/978-3-319-93381-8_6
10.1007/978-3-319-93381-8_6
 
Title Genomic Designing of Pearl Millet: A Resilient Crop for Arid and Semi-arid Environments
 
Creator Serba, D D
Yadav, R S
Varshney, R K
Gupta, S K
Govindaraj, M
Srivastava, R K
Gupta, R
Perumal, R
Tesso, T T
 
Subject Climate Smart Agriculture (CSA)
Plant Breeding
Cereals
Pearl Millet
Genetics and Genomics
Food and Nutrition
 
Description Pearl millet [Pennisetum glaucum (L.) R. Br.; Syn. Cenchrus americanus
(L.) Morrone] is the sixth most important cereal in the world. Today, pearl
millet is grown on more than 30 million ha mainly in West and Central Africa and
the Indian sub-continent as a staple food for more than 90 million people in agriculturally
marginal areas. It is rich in proteins and minerals and has numerous
health benefits such as being gluten-free and having slow-digesting starch. It is
grown as a forage crop in temperate areas. It is drought and heat tolerant, and a
climate-smart crop that can withstand unpredictable variability in climate. However,
research on pearl millet improvement is lagging behind other major cereals mainly
due to limited investment in terms of man and money power. So far breeding
achievements include the development of cytoplasmic male sterility (CMS),
maintenance counterparts (rf) system and nuclear fertility restoration genes (Rf) for
hybrid breeding, dwarfing genes for reduced height, improved input responsiveness,
photoperiod neutrality for short growing season, and resistance to important
diseases. Further improvement of pearl millet for genetic yield potential, stress
tolerance, and nutritional quality traits would enhance food and nutrition security
for people living in agriculturally dissolute environments. Application of molecular
technology in the pearl millet breeding program has a promise in enhancing the
selection efficiency while shortening the lengthy phenotypic selection process ultimately improving the rate of genetic gains. Linkage analysis and genome-wide
association studies based on different marker systems in detecting quantitative trait
loci (QTLs) for important agronomic traits are well demonstrated. Genetic
resources including wild relatives have been categorized into primary, secondary
and tertiary gene pools based on the level of genetic barriers and ease of gene
introgression into pearl millet. A draft on pearl millet whole genome sequence was
recently published with an estimated 38,579 genes annotated to establish
genomic-assisted breeding. Resequencing a large number of germplasm lines and
several population genomic studies provided a valuable insight into population
structure, genetic diversity and domestication history of the crop. Successful
improvement in combination with modern genomic/genetic resources, tools and
technologies and adoption of pearl millet will not only improve the resilience of
global food system through on-farm diversification but also dietary intake which
depends on diminishingly fewer crops.
 
Publisher Springer, Cham
 
Date 2020-02
 
Type Book Section
PeerReviewed
 
Format application/pdf
 
Language en
 
Identifier http://oar.icrisat.org/11383/1/Genomic%20Designing%20Pearl%20Millet_chapter6.pdf
Serba, D D and Yadav, R S and Varshney, R K and Gupta, S K and Govindaraj, M and Srivastava, R K and Gupta, R and Perumal, R and Tesso, T T (2020) Genomic Designing of Pearl Millet: A Resilient Crop for Arid and Semi-arid Environments. In: Genomic Designing of Climate-Smart Cereal Crops. Springer, Cham, Switzerland, pp. 221-286. ISBN 978-3-319-93381-8