A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration
CGSpace
View Archive InfoField | Value | |
Title |
A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration
|
|
Creator |
Makowski D
Asseng, S. Ewert, Frank Bassu S Durand, J.L. Li T Martre, Pierre Adam M Aggarwal, Pramod K. Angulo, Carlos Baron, C. Basso, Bruno Bertuzzi, Patrick Biernath, Christian Boogaard, H. Boote, Kenneth J. Bouman, B. Bregaglio, S. Brisson N Buis S Cammarano, Davide Challinor, Andrew J. Confalonieri, R. Conijn JG Corbeels, Marc Deryng, Delphine Sanctis, Giacomo de Doltra, Jordi Fumoto T Gayler, Sebastian Goldberg, Richard A. Grassini, Patricio Hatfield, Jerry L. Hasegawa, Tomoko Heng, Lee Hoek SB Hooker, Josh Hunt LA Ingwersen, Joachim Izaurralde, Roberto César Jongschaap, R.E.E. Jones, James W. Kemanian RA Kersebaum, Kurt-Christian Kim SH Lizaso J Marcaida, M. Müller, Christoph Nakagawa H Naresh Kumar, Soora Nendel, Claas O'Leary, Garry J. Olesen, J.E. Oriol P Osborne, Tom M. Palosuo, Taru Pravia MV Priesack, Eckart Ripoche, Dominique Rosenzweig, Cynthia Ruane, Alex C. Ruget, F Sau F Semenov, Mikhail A. Shcherbak, Iurii Singh B Singh U Soo HK Steduto, Pasquale Stöckle, Claudio O. Stratonovitch, Pierre Streck, Thilo Supit, Iwan Tang L Tao, Fulu Teixeira E Thorburn, Peter J. Timlin D Travasso, Maria Roetter RP Waha, Katharina Wallach, Daniel White, Jeffrey W. Williams JR Wolf, Joost Yin, X. Yoshida H Zhang, Z. Zhu Y |
|
Subject |
CLIMATE CHANGE
AGRICULTURE FOOD SECURITY CROP MODEL EMULATOR META-MODEL STATISTICAL MODEL YIELD |
|
Description |
Ensembles of process-based crop models are increasingly used to simulate crop growth for scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of simulated crop yield data. Such datasets potentially provide new information but it is difficult to summarize them in a useful way due to their structural complexities. An associated issue is that it is not straightforward to compare crops and to interpolate the results to alternative climate scenarios not initially included in the simulation protocols. Here we demonstrate that statistical models based on random-coefficient regressions are able to emulate ensembles of process-based crop models. An important advantage of the proposed statistical models is that they can interpolate between temperature levels and between CO2 concentration levels, and can thus be used to calculate temperature and [CO2] thresholds leading to yield loss or yield gain, without re-running the original complex crop models. Our approach is illustrated with three yield datasets simulated by 19 maize models, 26 wheat models, and 13 rice models. Several statistical models are fitted to these datasets, and are then used to analyze the variability of the yield response to [CO2] and temperature. Based on our results, we show that, for wheat, a [CO2] increase is likely to outweigh the negative effect of a temperature increase of +2 °C in the considered sites. Compared to wheat, required levels of [CO2] increase are much higher for maize, and intermediate for rice. For all crops, uncertainties in simulating climate change impacts increase more with temperature than with elevated [CO2].
|
|
Date |
2016-08-25T11:51:09Z
2016-08-25T11:51:09Z 2015 |
|
Type |
Journal Article
|
|
Identifier |
Makowski D, Asseng S, Ewert F, Bassu S, Durand JL, Li T, Martre P, Adam M, Aggarwal PK, Angulo C, Baron C, Basso B, Bertuzzi P, Biernath C, Boogaard H, Boote KJ, Bouman B, Bregaglio S, Brisson N, Buis S, Cammarano D, Challinor AJ, Confalonieri R, Conijn JG, Corbeels M, Deryng D, De Sanctis G, Doltra J, Fumoto T, Gayler S, Goldberg R, Grassini P, Hatfield JL, Hasegawa T, Heng L, Hoek SB, Hooker J, Hunt LA, Ingwersen J, Izaurralde C, Jongschaap REE, Jones JW, Kemanian RA, Kersebaum KC, Kim SH, Lizaso J, Marcaida III M, Müller C, Nakagawa H, Naresh Kumar S, Nendel C, O'Leary GJ, Olesen JE, Oriol P, Osborne TM, Palosuo T, Pravia MV, Priesack E, Ripoche D, Rosenzweig C, Ruane AC, Ruget F, Sau F, Semenov MA, Shcherbak I, Singh B, Singh U, Soo HK, Steduto P, Stöckle CO, Stratonovitch P, Streck T, Supit I, Tang L, Tao F, Teixeira E, Thorburn P, Timlin D, Travasso M, Roetter RP, Waha K, Wallach D, White JW, Williams JR, Wolf J, Yin, X, Yoshida H, Zhang Z, Zhu Y. 2015. A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration. Agricultural and Forest Meteorology 214-215:383-493.
https://hdl.handle.net/10568/76575 |
|
Language |
en
|
|
Source |
Agricultural and Forest Meteorology
|
|