Record Details

3D Mineral mapping of Queensland - Version 2 ASTER and related geoscience products

CSIRO RDS Repository

View Archive Info
 
 
Field Value
 
Title 3D Mineral mapping of Queensland - Version 2 ASTER and related geoscience products
 
Creator Tom Cudahy
 
Subject Geophysics not elsewhere classified
Geomorphology and Regolith and Landscape Evolution
Mineralogy and Crystallography
Exploration Geochemistry
Geology not elsewhere classified
Soil Sciences not elsewhere classified
Photogrammetry and Remote Sensing
Environmental Sciences not elsewhere classified
Earth Sciences not elsewhere classified
 
Description The digital 3-dimenional (3D) mineral mapping suite of Queensland comprises ~20 “standardized” products at the spectral resolution of the ASTER (Advanced Space-borne Thermal Emission and Reflection Radiometer) sensor and generated from publicly-available satellite, airborne, field and drill core spectral data spanning the visible near infrared (VNIR; 0.4 to 1.0 µm), shortwave infrared (SWIR; 1.0 to 2.5 µm) and thermal infrared (TIR; 7.5 to 12.0 µm) wavelength regions, including:
1. Satellite ASTER maps at both 30 m and 90 m pixel resolution with complete coverage of the state of Queensland, i.e. 1.853 million km²;
2. Airborne HyMap maps at ~5 m pixel resolution with a coverage of ~25,000 km2 from areas across north Queensland;
3. Field point samples (~300) from the National Geochemical Survey of Australia (NGSA) collected from a depth of 0-10 cm of flood overbank sediments;
4. Drill-core profiles (~20) of the National Virtual Core Library (NVCL) selected from the area around the Georgetown seismic line (07GA-IG2).
Key to the processing of the remote sensing data-sets (ASTER and HyMap) was the implementation of unmixing methods to remove the effects dry and green vegetation. This unmixing was not applied to the Australian ASTER geoscience maps released in 2012 (called here Version 1 or V1) resulting in extensive areas with little/no mineral information because of the need to apply masks. The vegetation unmixing methods used in the Version 2 (V2) processing of the ASTER and HyMap imagery has resulted in very few areas without coherent mineral information.
The resultant V2 “mineral group” products were designed to measure mineral information potentially useful for mapping: (i) primary rock composition; (ii) superimposed alteration effects; and (iii) regolith cover. These V2 products may assist in mapping soil properties and groundwater conditions. However their relatively low spectral resolution (based on ASTER’s 14 VNIR-SWIR-TIR bands) means that they do not provide the high level of mineralogical detail available from hyperspectral systems (>100 spectral bands), like HyMap and the HyLogger. Nevertheless, the relatively low spectral resolution of ASTER means that all other sensor data can be spectrally resampled to that resolution. Furthermore, the ASTER global data archive, which now spans entire Earth’s land surface <80degrees latitude, means that it can be used as global base-map for integrating all other spectral data.
 
Publisher CSIRO
 
Contributor Mal Jones
Vladimir A. Lisitsin
Mike Caccetta
Simon Collings
Roger Bateman
 
Date 2019-12-05
 
Type
 
Format
 
Identifier csiro:20912
 
Language
 
Coverage
 
Rights