Record Details

CIMMYT Institutional Multimedia Publications Repository

View Archive Info
 

Metadata

 
Field Value
 
Title Genomic prediction of genotype x environment interaction kernel regression models
 
Names Cuevas, J.
Crossa, J.
Soberanis, V.
Pérez-Elizalde, S.
Pérez-Rodríguez, P.
De los Campos, G.
Montesinos-Lopez, O.A.
Burgueño, J.
Date Issued 2016 (iso8601)
Abstract In genomic selection (GS), genotype × environment interaction (G × E) can be modeled by a marker × environment interaction (M × E). The G × E may be modeled through a linear kernel or a nonlinear (Gaussian) kernel. In this study, we propose using two nonlinear Gaussian kernels: the reproducing kernel Hilbert space with kernel averaging (RKHS KA) and the Gaussian kernel with the bandwidth estimated through an empirical Bayesian method (RKHS EB). We performed single-environment analyses and extended to account for G × E interaction (GBLUP-G × E, RKHS KA-G × E and RKHS EB-G × E) in wheat (Triticum aestivum L.) and maize (Zea mays L.) data sets. For single-environment analyses of wheat and maize data sets, RKHS EB and RKHS KA had higher prediction accuracy than GBLUP for all environments. For the wheat data, the RKHS KA-G × E and RKHS EB-G × E models did show up to 60 to 68% superiority over the corresponding single environment for pairs of environments with positive correlations. For the wheat data set, the models with Gaussian kernels had accuracies up to 17% higher than that of GBLUP-G × E. For the maize data set, the prediction accuracy of RKHS EB-G × E and RKHS KA-G × E was, on average, 5 to 6% higher than that of GBLUP-G × E. The superiority of the Gaussian kernel models over the linear kernel is due to more flexible kernels that accounts for small, more complex marker main effects and marker-specific interaction effects
Genre Article
Access Condition Open Access
Identifier 1940-3372