Record Details

CIMMYT Institutional Multimedia Publications Repository

View Archive Info
 

Metadata

 
Field Value
 
Title Chapter 8. Linear molecular and genomic eigen selection index methods
 
Names Ceron Rojas, J.J.
Crossa, J.
Date Issued 2018 (iso8601)
Abstract The three main linear phenotypic eigen selection index methods are the eigen selection index method (ESIM), the restricted ESIM (RESIM) and the predetermined proportional gain ESIM (PPG-ESIM). The ESIM is an unrestricted index, but the RESIM and PPG-ESIM allow null and predetermined restrictions respectively to be imposed on the expected genetic gains of some traits, whereas the rest remain without any restrictions. These indices are based on the canonical correlation, on the singular value decomposition, and on the linear phenotypic selection indices theory. We extended the ESIM theory to the molecular-assisted and genomic selection context to develop a molecular ESIM (MESIM), a genomic ESIM (GESIM), and a genome-wide ESIM (GW-ESIM). Also, we extend the RESIM and PPG-ESIM theory to the restricted genomic ESIM (RGESIM), and to the predetermined proportional gain genomic ESIM (PPG-GESIM) respectively. The latter five indices use marker and phenotypic information jointly to predict the net genetic merit of the candidates for selection, but although MESIM uses only statistically significant markers linked to quantitative trait loci, the GW-ESIM uses all genome markers and phenotypic information and the GESIM, RGESIM, and PPG-GESIM use the genomic estimated breeding values and the phenotypic values to predict the net genetic merit. Using real and simulated data, we validated the theoretical results of all five indices.
Genre Book Chapter
Access Condition Open Access
Identifier 978-3-319-91222-6 (Print)